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MOTIVATION

Why is a glass rigid despite its amorphous structure? In a rigid system, a local
disturbance leads to a bulk response. For example, application of a small force to
one end of a crystal will lead to its collective motion; energetically it is favorable
for its constituent atoms to maintain their relative positions. By contrast a similar
force applied to a liquid will lead to local rearrangements, and all memory of its prior
configuration will be soon forgotten. Rigidity implies slow relaxation processes, long
time-scales and thus long-range temporal correlations which are usually associated with
long-range spatial ordering. So why does a glass have mechanical properties at all
similar to those of a crystal?

As a point of reference, let us consider the response of an ideal crystal to appli-
cation of shear. We note that its low-temperature state is uniquely defined (modulo
transformations of the crystal group). The system is cooled into its crystalline phase
and after a waiting time, t,, a shear deformation is applied. For all practical mea-
surement times, t,, = t, + t, it recovers its inital state; it displays perfect memory
of its original configuration independent of specifics associated with the shearing and
measurement processes.

At low temperatures a crystal has long-range spatial order. By contrast the low-
temperature structure of glasses is determined by the incompatibility between local
and global ordering, and is not unique on any spatial scale.!» 2 Though such frustration
certainly plays a key role in glass formation, purely structural approaches do not address
the thermal or dynamical aspects of glassy behavior. For example, unlike a liquid or
a crystal, the low-temperature state of a glass is dependent on its sample history.
Therefore the response of a glass to shear is not simple. First of all, its inital low-
temperature state is a function of sample history; the number of such configurations
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scales exponentially with the number of sites. Furthermore the response is dependent
on both ¢, and ¢, + ¢, and not simply on their difference, ¢{. On short time-scales
(t < tw) , a glass exhibits perfect memory of its original configuration; by contrast on
longer ones (¢t > t,) a glass “flows” and thus forgets its past, a phenomenon often
referred to as “ageing”.

Maxwell was one of the first physicists to address the crossover between viscous
and elastic behavior in supercooled liquids.> Conceptually his treatment is amusingly
similar to later studies of the metal-superconductor transition;* it also provides a nice
study of “generalized rigidity”, an idea that has been emphasized in conjunction with
broken symmetry by Anderson.® The analogy is presented in Table I. In a metal the flow
equation is Ohm’s Law: the current (J) is proportional to the field (E); alternatively
the flow of charge is proportional to the time derivative of the vector potential (A).
Analogously in a liquid the shear (IT) is proportional to the time derivative of the
strain (u); the shear can be viewed as the flow of momentum. At finite frequency
charge currents in a simple metal relax on a characteristic time-scale 7 leading to a
Drude relation for the conductivity o; momentum currents in a liquid decay in a similar
fashion with an analogous relation for the viscosity 7. Then, for example at a particular
temperature, this characteristic time-scale 7 diverges and the system displays rigidity.
In the resulting solid, the shear is proportional to the strain. In the superconductor the
supercurrents are proportional to the vector potentional as described by the London
equation. In the superconductors and the solids, the rigidity is associated with the
development of supercurrents of charge and momentum respectively. The analogue of
the London kernel in the superconductor is the shear modulus, and there is a Kubo
relation for both of these quanties.

At this point we have only discussed the development of a solid, but have not
distinguished between a crystal and a glass. This distinction is summarized in Table
II. As we have already mentioned above, a crystal breaks translational symmetry and
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has long-range spatial ordering; by contrast there is not any such simple long length-
scale associated with a glass. A crystalline state is unique up to transformations of
the crystal group. In a glass, there is no preferred order so that local changes can
lead to new metastable states. As a result, the number of states in a glass scales
exponentially with the number of sites in the system. Characterization of the low-
temperature glassy state then becomes rather difficult. Conventionally, for example
in a crystal, one applies a small symmetry-breaking field to restrict one’s statistical
trace to the states in a single well. Then, using this restricted trace, one can proceed
with equilibrium statistical mechanics as usual in the low-temperature phase. However
because there are an exponential number of states in a glass, it is not possible to
distinguish different metastable configurations by application of a simple field. As a
result one cannot determine properties of the glass using a conventional Gibbs approach;
more specifically, one cannot employ the fluctuation-dissipation theorem.

As previously mentioned, the similarities and differences between a glass and a
crystal are best displayed by considering the behavior of the shear modulus (e.g. Table
IT). The memory of a glass improves with increasing waiting time (tw); indeed if one
takes the waiting time to infinite first and then lets the measurement time (t, + t)
diverge it has perfect memory just like a crystal. Here the order of limits is crucial. By
contrast for fixed waiting time in the limit of infinite measurement time, a glass loses
its rigidity; by contrast the response of a crystal is invariant under time-translation,
and thus its memory is perfect and independent of the order of limits associated with
t, and t.

In a nutshell, glassiness is solidification without crystallization. It occurs in a
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large number of materials of diverse microscopic character; therefore one feels that
there should exist an underlying reductionist picture, the analogue of the Ising model
for second-order phase transitions, which has not yet been found. In particular, how is a
system simultaneously out-of-equilibrium and stable on very long (sometime millenium)
time-scales? How does one keep an intrinsically non-random system away from its
thermodynamic ground-state? There has been tremendous technical progress in our
theoretical understanding of disordered models; is it possible to link “dirty” and “clean”
glasses? There have been several studies of such mappings, which seem to exist, and
we refer the interested reader to an excellent review on this subject.® Here the strategy
is similar to that associated with energy level spectra in complex nuclei, where progress
was made through studies of random Hamiltonians. However in what follows, we shall
discuss a complementary approach: a direct study of a specific non-random system
that displays glassiness. We have taken a somewhat “Galilean” approach to the glass
problem: we have abstracted it to a point that we can manage, hoping to have gleaned
its essential features. Then we have characterized it with the available tools at our
disposal to check whether it has the desired properties. Finally we have tried to make
contact with experiment by making predictions for measurements to check whether
we are on the right track! In the next section we hope to give the reader a flavor of
the model of study and for our main analytic results. Next we’ll discuss some early
experiments on this “simple glass” and some predictions for measurements that we’d
like to see. We’ll mention briefly how this “Galilean” system, with both memory and
a large number of states, can be used for information storage. Finally we’ll end with a
summary and everpresent open questions which should be addressed in the future.

A “GALILEAN” MODEL FOR A SIMPLE GLASS

In the spirit of the Maxwellian analogy between liquids and metals discussed above,
we have studied the glass transition in a long-range superconducting array. The physical
system of study is a stack of two mutually perpendicular sets of N parallel thin wires
with Josephson junctions at each node (Figure 1) that is placed in an external tranverse
field H. The thermodynamic variables of this array are the 2N quantum mechanical
phases of the superconducting order parameter associated with each wire; these play an
analogous role to that of the atomic positions or density waves in a real glass. We note
that in this network each horizontal/vertical wire is coupled to each vertical/horizontal
one by a Josephson junction, so that in the thermodynamic limit (N — oo for fixed
array area) the number of neighbors diverges.

The energy scales associated with this long-range array are associated with the
individual superconducting wires and with the Josephson junctions. In the absence
of a field the macroscopic phase of a superconductor is constant in equilibrium, as-
suming that its thickness [ is larger than the coherence length & so that phase slips
are energetically unfavorable. Application of a field results in the procession of this
macroscopic phase, where the rate of procession is determined by the amplitude of the
applied field. In the absence of a field the phase differences would be zero at each
Josephson junction, but this is no longer possible at finite H. Thus frustration in
this network can be “tuned” by application of a transverse field; the system is then
overconstrained since there are 2N phases and N? Josephson junctions with competing
energetic requirements.

Here we assume that the Josephson couplings in the array are sufficiently small
so that the induced fields are negligible in comparison with H; we shall return to this
issue when discussing the experimental realization of this network. We can therefore

146



describe the arary by the Hamiltonian

27 d;
H=-J) cos (qﬁj — ¢ — il ’k) = ReZS;‘-ijsk (1)
ik Do ik

with 1 < (j, k) < N where j(k) is the index of the horizontal(vertical) wires and @, is
the flux quantum; the effective spins s, = e*%* where the ¢ are the superconducting
phases of the 2N wires. The couplings are site-dependent and are related to the enclosed
flux at a given node such that

211 ®; 2rak
ij=JexpM:Jex i (2)
0
where we have introduced the flux per unit strip a = N—q{?—z, with [ is the inter-node

spacing; here we note that the sign of the coupling depends on the enclosed flux and
can be both positive and negative.

Because every horizontal (vertical) wire is linked to every vertical (horizontal)
wire, the number of nearest neighbors in this model is N and it is accessible to an
analytic mean-field treatment. For the same reason, the free energy barriers separating
its low-temperature solutions scale with V. This situation is in marked contrast to
that in conventional 2D arrays where the coordination and hence the barriers are low.”
A similar long-range network with positional disorder was studied previously.® For
a > 1/N that system displays a spin glass transition which was mapped onto the
Sherrington-Kirkpatrick model? for @ > 1; in this field regime there is no residual
“ferromagnetic” phase coherence between wires. Physically this glassy behavior occurs
because the phase differences associated with the couplings Jj; acquire random values
and fill the interval (0, 27) uniformly for o > 1/N. More specifically, there will be no
commensurability if the sum

N N :
B ijJ,L =J¢ D exp2mi {%Nl—)—} (3)
k=1 k=1
is smooth where {7,} (k) are indices labelling horizontal (vertical) wires; this will occur
only if the expression in curly brackets on the r.h.s. of (3) is not an integer, a condition
always satisfied for the disordered array. For the periodic case, this situation is realized
in the “incommensurate window” 1/N < « < 1; here the phase-ordering unit cell is
larger than the system size so that the “crystalline” phase is inaccessible. There are
thus no special field values where the number of low-temperature solutions are finite,
in contrast to the situation for @ > 1. In the thermodynamic limit of N — oo (with
fixed array area), the high-temperature approach to the glass transition in this system
has been studied!®!! using a modified Thouless-Anderson-Palmer (TAP) method."
Here we discuss the qualitative picture that emerges from these results (cf. Fig. 1),
referring the interested reader elsewhere for a more detailed quantitative treatment. As
T approaches T}, where T,F ~ Tp ~ 12‘/—2, there appear a number of metastable states
in addition to the paramagnetic free-energy minimum; most likely they are energetically
unfavorable and thus do not “trap” the system upon cooling from high temperatures.
As T — T4, the paramagnetic minimum is “subdivided” into an extensive number of
degenerate metastable states separated by effectively infinite barriers, and the system
is dynamically localized into one of them. Qualitatively, in the interval 77, > T > Tg
there appear many local minima in the vicinity of the paramagnetic state separated by
finite barriers; these barriers increase continuously and become infinite at 7' = T;. Each
of these minima is characterized by a finite “site magnetization” m; = (s;)7 where “site”
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Figure 1. The phase diagram of the array (inset) where T indicates the temperature asosciated
with the dynamical instability discussed in the text, T's is the speculated equilibrium transition
temperature and T}, is the “superheating” temperature where the low-temperature metastable states
cease to exist.

refers to a wire. When 7" > T thermal fluctuations average over many states so that
(m;) = 0. At T = T the system is localized in one metastable state and there is
an associated jump in the Edwards-Anderson order parameter, (q = ﬁ Zi(mi)2). The
low-temperature phase is characterized by a finite ¢ and by the presence of a memory,
limy 0o A(t,2') # 0 where A(t,t') is the anomalous response, defined as A(t,t') =
(g—,’:—é%). At T = Tg, the metastable states are degenerate and thus there can be no
thermodynamic selection. However at lower temperatures interactions will probably
break this degeneracy and select a subset of this manifold; then we expect an (t —
00) equilibrium first-order transition (Ts) which should be accompanied by a jump
in the local magnetization. In order to observe this transition at Ts the array must
be equilibrated on a time-scale (tg) longer than that (¢4) necessary to overcome the
barriers separating its metastable states; ¢, scales exponentially with the number of
wires in the array. Thus the equilibrium transition at T is observable only if tg — co
before the thermodynamic limit (N — co) is taken; in the opposite order of limits only
the dynamical transition occurs.

The periodic array thus exhibits a first-order thermodynamic transition preceeded
by a dynamical instability; the glass transition at T is characterized by a a diverg-
ing relaxation time and an accompanying jump in the Edwards-Anderson order pa-
rameter. In general the dynamical behavior of this network is described by coupled
integral-differential equations for the correlation (Dy = (s(t)s(t'))) and the response
(Gw = ( :,f((f,))) where ¢t > t') functions. At temperatures above the glass transition
T > T the response and the correlation functions are related by the fluctuation-
dissipation theorem and there is time-translation invariance; the resulting equation
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Figure 2. Schematics of (a) Temperature (T) (b) Applications of an additional field (AH) vs. time
(t) indicates the time-scales involved in a finite-cooling experiment as discussed in the text; T and
i refer to the “effective glass transition” when the system goes out of equilibrium, and tg, tp; and
t* are the time-scales associated with the onset of an additional field, a subsequent measurement and
ageing.

for the system’s dynamical evolution is structurally similar to that derived for density-
density correlations in the mode-coupling approach to the liquid-glass transition.!® Fur-
thermore the general coupled equations describing the dynamical behavior of this non-
random network in the regime (1/N <« « < 1) are identical to those obtained for
the p = 4 (disordered) spherical Potts model.’ The possible connection between non-
random glasses and p > 3 (disordered) spherical models has been previously suggested
in the literature,'® 16 7 and these results give support to those conjectures. Further-
more these long-range Josephson arrays can be built in the laboratory, allowing for
parallel theoretical and experimental studies of the “simplest spin glasses” that have
previously been an abstraction. Several physical properties of the array have been
characterized'® in its non-ergodic regime (7' < 7). We note that the glass transition
temperature T described above corresponds to the system going out of equilibrium
as it is cooled infinitesmally slowly from high temperatures. In practice any physical
cooling process occurs at a finite rate, and the effective glass transition occurs when
the system drops out of equilibrium; thus the observed glass transition temperature
is a function of the time-scale of the experimental probe. If we define the reduced

temperature © = (TT[.—ZG)) then the effective glass transition will occur when the time

associated with cooling, ¢, ~ ﬁi is equal to the relaxation time at that tempera-
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d(t.t’)

Figure 3. The rescaled correlation function d(t,#') for the cooling-heating regime. Here the
temperature was reduced infinitely fast to a temperature T; < Ty at ' = 0; the system was
equilibrated for 0 < ¢’ < 30, then heated linearly for 30 < t' < 40, then cooled linearly back to its
original temperature T} for 40 < ¢’ < 50, and then measured at ¢t = 70. Different curves correspond
to different amplitudes of the heat pulse as shown. We see that for heat pulses of amplitude less than
0.6 the system recovers its original state; however, for larger heat pulses all memory is lost.

ture, Tp = t,0~” where ¢y and v are determined from the high-temperature analysis
elsewhere.!! There is evidence for history-dependence; the system’s response is very
different if an additional field is turned on during or after the cooling process, remi-
niscent of the zero-field cooled vs. field-cooled susceptibility observed in spin glasses.
Furthermore there exists an “ageing” time-scale t* this system (cf. Fig. 2); if the field
is turned on during the cooling process at time ¢ and a measurement is taken at time
ty such that ¢y — ) < ¢x the system “remembers” the cooling process; otherwise
(tw — tm > tx) it “forgets” it completely.

The low-temperature “memory” of the superconducting array is perhaps best ex-
hibited by its response to an applied heat pulse 8. The correlation function D,y as a
function of ¢/, displayed in Figure 3, exhibits the system’s overlap between its state at
time ¢ and time ¢’ after a fast temperature quench. Heat pulses of varying amplitudes
(c.f. Fig. 3) are applied after the quench, and the system’s memory is probed. For all
but the largest amplitude pulse, the system recovers its original dynamical trajectory
indicating the presence of long-range temporal correlations. Such measurements have
been performed experimentally on real spin glasses to determine the structure of their
low-temperature states.!® An analogous numerical analysis of the superconducting ar-
ray indicates that all metastable states appear at the glass transition; this absence of
further subdivision of states is consistent with analytic work on the structure of states
in the p = 4 (disordered) spherical model.?°
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DISCUSSION

Since the experimental realization of these arrays is important, we would like to
identify several assumptions in the theoretical treatment; in order to test its predictions
and probe beyond its realm (e.g. finite-size effects) the fabricated system must satisfy
certain physical requirements®! 22 In particular the effects of everpresent screening cur-
rents must be minimized to ensure that the external field frustrates the superconducting
phases effectively. More specifically the induced flux in the array should be less than a
flux quantum so that all fields and phase gradients produced by diamagnetic currents
are negligible. The resulting condition on the array limits the number of wires; there
is thus a delicate balance between the need for many neighbors (and high free-energy
barriers) and an external field that effectively frustrates the phases. Furthermore the
model has only been considered in the classical limit where quantum mechanical fluc-
tuations of the phases are negligible. These constraints put some strong restrictions on
the choice of array parameters, which have been elaborated elsewhere.?! 22

Once the arrays are fabricated to specification, what experiments should be per-
formed? Recently there have been some measurements probing the static properties
of such long-range arrays.?? Commensurability effects were studied in a small net-
work as a function of field; the results were in good agreement with mean-field theory
and in particular indicated the absence of long-range spatial phase ordering for field
strengths @ < 1. What other experimental measurements would we like to see? History-
dependence of the critical current j, should be studied to establish the presence of large
barriers crucial for the development of glassiness; more specifically the dependence of
je on path in the 7' — H plane should be investigated. The critical current j. should
be measured for a large number of thermal cyclings; if the system is glassy it should
display a well-defined distribution P(j.). Finally the diverging relaxation time at T}
should be accessible via the a.c. response to a time-varying field H(t); the associated
a.c. susceptibility is

2 e g]\;w _ C_(a)w @)
w w+1i/Tr(T)

where 7p is the longest response of the system that diverges at T = T, and C(a) is
to be found elsewhere.!’ The w — 0 limit of the a.c. susceptibility jumps to a finite
value at T' = T}, indicating the development of a finite superconducting stiffness at the
transition. Therefore measurement of this a.c. response in a fabricated array would be
a direct probe its predicted glassiness.

This array has long-range temporal correlations (memory) and has an extensive
number of metastable states;*® can it be used for information storage? Indeed high
connectivity and nonlinear elements (here the Josephson junctions) are key features
required for the construction of associative memories.?* Here one would like to store
p patterns in such a way that if the memory is exposed to a slightly different one, it
produces the stored pattern most similar to it. A simple model for such a memory is
based on an array of McCulloch-Pitts neurons.?* The patterns are stored in couplings
which are chosed to minimize an energy function. Each nonlinear element has multiple
inputs n; = 0, 1; in the simplest model the couplings can have arbitrary sign and the
ouput is “computed” by each element using the simple formula n; = © %Zj Jijnj).
Clearly the output is robust to errors in the input due to the multiple connections
present. An array of such artificial neurons is thus content-addressable and fault-
tolerant.

It is quite straightforward to adapt the long-range array described above to be-
come a superconducting analog of a McCulloch-Pitts networks.?> The couplings at each
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Josephson node can be “written” by a superimposed array of superconducting quantum
interference devices (SQUIDs). The inputs and outputs are rapid single flux quantum
(RSFQ) voltage pulses.?® For each stored pattern there is an input-output dictionnary
associated with the pulses, and the system would be tolerant to input errors. For
an array of N = 1000 wires with internode spacing | = 0.5, the capacity would be
C = 0.1N? = 10° bits with an access time per bit of 7, ~ 102 sec. Because the
N = 1000 bits in a given pattern could be accessed in parallel, the access time per
image could be Tpy = % = 107" seconds. Thus it is a candidate for nonlocal infor-
mation storage; it is faster but has lower capacity per unit area than the best optical
holographic memories.?®

In conclusion, we have presented a summary of recent work on a periodic “Galilean”
glass that displays rigidity in the absence of long-range spatial order. This glass tran-
sition is characterized by a diverging relaxation time and an accompanying jump in
the Edwards-Anderson order parameter. At temperatures above the glass transition its
dynamical equation is similar in structure to that studied in mode-coupling approaches
to the liquid-glass transition. More generally, its evolution is described by coupled
integral-differential equations which are identical to those of a well-studied disordered
model. Preliminary experiments have probed the static structure of the array, indi-
cating the absence of commensurability except for special field values. Predictions for
further dynamical measurements have been made, including a suggestion for probing
the diverging relaxation time at the glass transition.

Naturally there remain many open questions. How many of the extensive number
of metastable states are actually physically accessible? Recent work?’ suggests that
a small number of these states have basins of attraction far exceeding the average.
If true, this result could have more general implications for other complex systems,
particularly for the problem of protein-folding. Quantum effects in this array remain
to be studied and could have interesting consequences. The memory discussed above
is completely passive; in principle one could construct an adaptation of this array that
both remembers and learns. Finally how robust are the properties of this long-range
glass to spatial inhomogeneities (finite-size effects)? There is still much to be learned
in the study of rigidity, even in the simplest systems.

REFERENCES

1.  For example, many chalcogenide glasses are well described by continuous random networks; here
the rigidity has been studied using a stability analysis involving the geometrical constraints. This
structural treatment has led to predictions or optimal glass compositions in a number of covalnet
systems consistent with experiment. For a general review of this constraint-counting approach
and its interplay with experiments see M.F. Thorpe, J. Non-Crys. Sol. 182, 135 (1995).

2. For a review of different conceptual approaches to the glass problem see J. Jackle, Rep. Prog.
Phys. 49, 171 (1986).

3. For a discussion of Maxwell’s approach in contemporary language see J. Zarzycki, Glasses and
the Vitreous State, Cambridge University Press, Cambridge, 1982).

4. We thank P. Coleman for several discussions of this analogy.

5. P.W. Anderson, Basic Notions of Condensed Matter Physics, (Benjamin/Cummings, Menlo Park,
1984). : .

6. J-P. Bouchaud, L. Cugliandolo, J. Kurchan and M. Mezard in Spin Glasses and Random Fields,
A.P. Young ed., (World Scientific, Singapore, 1997).

7. e.g. J.E. Mooj and G.B.J. Schon ed., “Coherence in Superconducting Networks,” Physica 152B,
1 (1988).

8. V. M. Vinokur, L. B. Ioffe, A. I. Larkin, M. V. Feigelman, Sov. Phys. JETP 66, 198 (1987).

9.  D. Sherrington and S. Kirkpatrick, Phys. Rev. B 35, 1792 (1975).

10. P. Chandra, L.B. Ioffe and D. Sherrington, Phys. Rev. Lett. 75, 713, (1995).

152



11.
12.
13.
14.
15.

16.

17:
18.
19.

20.
21.
22.
23.
24.
25.
26.

27.
28.

P. Chandra, M.V. Feigelman and L.B. Ioffe, Phys. Rev. Lett. 76, 4805, (1996).

D.J. Thouless, P.W. Anderson and R.G. Palmer, Phil. Mag. 35, 593 (1977).

W. Gotze, Z. Phys. B56, 139 (1984); E. Leutheusser, Phys. Rev. A 29, 2765, (1984).

A. Cristanti, H. Horner, J.-J. Sommers, Z. Phys. B, 92, 257 (1993).

The mapping between periodic and disordered systems was first suggested by T.R. Kirkpatrick
and D. Thirmulai, Phys. Rev. Lett. 58, 2091 (1987); T.R. Kirkpatrick and D. Thirmulai, Phys.
Rev. B 36, 5388, (1987); T.R. Kirkpatrick, D. Thirumalai and P.G. Wolynes, Phys. Rev. B 40,
104, (1989).

G. Parisi in J.J. Brey, J. Marro, J.M. Rubi and M. San Migual, eds. Twenty Five Years of Non-
Equilibrium Statistical Mechanics; Proc. of the Thirteenth Sitges Conference, (Springer-Verlag,
Berlin 1995), pp. 135-42.

S. Franz and J. Herz, Phys. Rev. Lett. 74, 2115, (1995).

P. Chandra, M.V. Feigelman, L.B. Ioffe and D.M. Kagan, Phys. Rev. B 56, 11553 (1997).

E. Vincent, J.Hamman, M. Ocio, J.-P. Bouchaud and L.F. Cougliandolo in Complex Behavior
of Glassy Systems eds. M. Rubi and C. Perez-Vicente (Springer-Verlag, Berlin, 1997)pp. 184 -
219.

J. Kurchan, G. Parisi and M.A. Virasoro, J. Phys. I3, 1819 (1993).

P. Chandra, M.V. Feigelman, M.E. Gershenson and L.B. Ioffe in Complex Behavior of Glassy
Systems eds. M. Rubi and C. Perez-Vicente (Springer-Verlag, Berlin, 1997) pp. 376 - 384.

H.R. Shea and M. Tinkham, Phys. Rev. Lett. 79, 2324 (1997).

P. Chandra, L.B. Ioffe and D. Sherrington, to be published.

J. Hertz, A. Krogh, R.G. Palmer, Introduction to the Theory of Neural Computation (Addison-
Wesley, Redwood City, 1991).

P. Chandra and L.B. Ioffe, U.S. Patent No. 5,629,889 (1997); P. Chandra and L.B. Ioffe, to be
published.

K. Likharev in The New Superconducting Electronics, H. Weinstock and R.W. Ralston eds.,
(Kluwer, Dordrecht, 1992).

P. Chandra and L.B. Ioffe, to be published.

R. Linke, Private Communication.

153



