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Abstract.
The Stekloff eigenvalue problem has been a recent problem of interest due to its potential use

in nondestructive testing of materials, but it suffers from two shortcomings that are common among
this class of eigenvalue methods: it is not known in general if Stekloff eigenvalues exist in the case of
complex coefficients, and there exists no mechanism in which to increase their sensitivity to changes
in the material properties of the medium under consideration. We present a variation of the Stekloff
eigenvalue problem which overcomes both of these issues by the introduction of a certain operator in
the boundary condition, and we provide numerical examples to examine the practical consequences
of this variation. We discuss this idea in the broader context of what might be called tailored
eigenvalue methods, in which the eigenvalue problem is designed to ensure favorable theoretical or
practical results.
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1. Introduction. A recent subject of interest has been the use of eigenvalues to
determine information about the material properties of a scattering medium, and in
particular we consider the use of eigenvalues as a potential target signature, i.e. a set
of numbers which corresponds to a material and may be computed from measured
scattering data. An effective target signature allows for a comparison of a potentially
damaged material with its undamaged counterpart and consequently serves as an im-
portant tool in the nondestructive testing of materials. The theory of transmission
eigenvalues is an early example that continues to be an active area of research, and we
refer to [7] for a detailed treatment of this topic. However, it has been observed that
transmission eigenvalues exhibit some practical shortcomings; in particular, detecting
transmission eigenvalues requires the collection of multifrequency data in a predeter-
mined interval. Moreover, only real transmission eigenvalues may be detected from
measured scattering data, and for an absorbing inhomogeneous medium it can be
shown that no real transmission eigenvalues exist. Both of these issues arise from
the observation that transmission eigenvalues are intimately related to the frequency
of the interrogating wave, which is a physical parameter and consequently presents
physical limitations. From this point of view, a useful alternative is to consider an
eigenvalue problem in which the eigenparameter of interest is entirely artificial in
nature, and this approach has been recently considered in [3, 8, 9, 10, 11, 12, 13].

Each member of this new class of eigenvalue problems arises by choosing an
auxiliary problem that corresponds to mathematically changing the background of
the physical scattering problem, and an important note is that the auxiliary problem
need not have any relationship to the physical problem. As a result we have a high
degree of flexibility in generating these eigenvalue problems. We may leverage this
freedom in order to develop what might be called tailored eigenvalue methods in which
the auxiliary problem is designed to achieve a certain outcome, such as improved
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theoretical results or practical application. An example of this approach arose in [9], in
which the authors tailored the auxiliary problem to achieve desirable solvability results
for the electromagnetic version of the Stekloff eigenvalue problem. We also mention [4]
and [5], in which the authors considered a modification of the transmission eigenvalue
problem. A key difference from our present ideas is that the eigenparameter was still
related to the physical parameter of frequency. However, the modified spectrum was
able to provide improved information on the material coefficients, and consequently
this work still falls under the theme of tailored eigenvalue methods.

The main goal of this paper is to present and study a type of auxiliary problem
which addresses two pervasive difficulties in this new class of eigenvalue methods.
First, it is difficult to establish the existence of eigenvalues when the resulting ei-
genvalue problem is not self-adjoint (often corresponding to an absorbing material),
except in instances when the boundary of the domain and the coefficients are infin-
itely smooth (cf. [8, 12]). Second, the eigenvalues do not always display sufficient
sensitivity to changes in the material to which they correspond, which leads to dif-
ficulties in their potential application as a target signature. The general remedy is
to include a tuning parameter in the auxiliary problem, as in [3, 10, 12, 13], but at
present it has only been available for one type of auxiliary problem. Our solution is a
slight modification of previously considered auxiliary problems, and we present it for
a specific choice leading to a variation of the Stekloff eigenvalue problem for an inho-
mogeneous medium. We will see that this generalized Stekloff problem is trace class
in the sense that its corresponding Robin-to-Dirichlet map is a trace class operator.
This observation will play a vital role in our existence result.

The outline of our paper is as follows. In Section 2 we will briefly introduce
the physical scattering problem we will consider, and we will provide a mathematical
foundation of the general approach we have discussed up to this point. We will
conclude this section with an overview of the standard Stekloff eigenvalue problem
and mention the difficulties we will overcome in this particular case. In Section 3 we
will introduce our modification of this problem, which will first require us to discuss
the properties of the Laplace-Beltrami operator and its spectrum. We will study the
so-called δ-Stekloff eigenvalue problem in Section 4 and establish our main result that
infinitely many eigenvalues exist, even for an absorbing medium. We will also provide
the necessary details to show that δ-Stekloff eigenvalues may be computed from far
field data. In Section 5 we will investigate the stability of the δ-Stekloff eigenvalues
induced by 1) changes in the material properties, and 2) changes in the parameter δ
that appears in the auxiliary problem. We prove stability of an associated solution
operator in both cases. In Section 6 we present a series of numerical examples in
which we investigate the sensitivity of δ-Stekloff eigenvalues to changes in the material
properties and verify that they may be detected from far field data. Finally, we
conclude in Section 7 with some remarks on the extension of this approach to other
types of scattering problems.

2. The physical scattering problem. We now introduce the physical scatter-
ing problem that we will consider for most of our discussion. We consider a func-
tion n ∈ L∞(Rd) (d = 2, 3) representing the refractive index of an inhomogeneous
medium, and we assume that the contrast 1 − n is supported in a bounded set D,
where D is a Lipschitz domain with connected complement Rd \D. We also assume
that Re(n) ≥ n0 > 0 and Im(n) ≥ 0 a.e. in D. We consider scattering by this
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inhomogeneous medium of an incident field ui that satisfies the Helmholtz equation

∆ui + k2ui = 0 in Rd

for a fixed wave number k > 0, and we seek a scattered field us ∈ H1
loc(Rd \D) and a

total field u ∈ H1(D) such that

∆us + k2us = 0 in Rd \D,(2.1a)

∆u+ k2nu = 0 in D,(2.1b)

u− us = ui on ∂D,(2.1c)

∂u

∂ν
− ∂us

∂ν
=
∂ui

∂ν
on ∂D,(2.1d)

lim
r→∞

r(d−1)/2
(
∂us

∂r
− ikus

)
= 0.(2.1e)

We assume that the Sommerfeld radiation condition (2.1e) holds uniformly in all
directions, and it follows that (2.1a)–(2.1e) is well-posed [7].

The scattered field us has the asymptotic form of an outgoing spherical wave with

a certain amplitude, and for a plane wave incident field ui(x) = eikx·d̂ with direction

d̂ ∈ Sd−1 we write this asymptotic formula as

us(x) =
eik|x|

|x|(d−1)/2

(
u∞(x̂, d̂) +O

(
1

|x|(d+1)/2

))
as |x| → ∞.

The function u∞(x̂, d̂) is called the far field pattern, and we refer to x̂ and d̂ as
the observation direction and incident direction, respectively. When considering the
inverse scattering problem, the measurements of this function at various observation
and incident directions serve as our data. A central tool in this analysis is the far
field operator F : L2(Sd−1)→ L2(Sd−1) defined by

(Fg)(x̂) :=

∫
Sd−1

u∞(x̂, d̂)g(d̂)ds(d̂), x̂ ∈ Sd−1.

As we mentioned in the introduction, our intended application of eigenvalue meth-
ods is to detect changes in the refractive index n from comparing the measured far
field pattern to that of a reference medium, and the quality of this comparison will
depend on our choice of eigenvalue problem. In order to generate such an eigenvalue
problem, we select an auxiliary scattering problem depending on a parameter λ that
yields a far field pattern uλ,∞(x̂, d̂), and we define the corresponding auxiliary far
field operator Fλ : L2(Sd−1)→ L2(Sd−1) by

(Fλg)(x̂) :=

∫
Sd−1

uλ,∞(x̂, d̂)g(d̂)ds(d̂), x̂ ∈ Sd−1.

We remark that the auxiliary far field pattern uλ,∞(x̂, d̂) need not have any rela-
tionship to the physical scattering problem (2.1a)–(2.1e), with the exception that the

scattered field which gives rise to uλ,∞(x̂, d̂) must satisfy the Helmholtz equation with
the same wave number k in the exterior of some ball centered at the origin. The re-
sulting eigenvalue problem will arise from a study of the modified far field operator
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given by Fλ := F − Fλ, which may be expressed as

(Fλg)(x̂) :=

∫
Sd−1

[
u∞(x̂, d̂)− uλ,∞(x̂, d̂)

]
g(d̂)ds(d̂), x̂ ∈ Sd−1.

In [8] the auxiliary problem was chosen to be the exterior impedance problem of
finding an auxiliary scattered field usλ ∈ H1

loc(Rd \B) satisfying

∆usλ + k2usλ = 0 in Rd \B,(2.2a)

∂usλ
∂ν

+ λusλ = −∂u
i

∂ν
− λui on ∂B,(2.2b)

lim
r→∞

r(d−1)/2
(
∂usλ
∂r
− ikusλ

)
= 0,(2.2c)

which is well-posed whenever Im(λ) ≥ 0 [8]. Here B is chosen to be a bounded
Lipschitz domain containing D. In this case the modified far field operator Fλ is
injective with dense range provided that there exists no nontrivial solution w ∈ H1(B)
of

∆w + k2nw = 0 in B,(2.3a)

∂w

∂ν
+ λw = 0 on ∂B.(2.3b)

A value of λ for which (2.3a)–(2.3b) admits a nontrivial solution is called a Stekloff
eigenvalue, and the properties of this class of eigenvalues in the present context have
been extensively studied in [3] and [8]. However, many interesting questions remain,
and here we address two of them. First, it is not known if Stekloff eigenvalues exist
in the general case of complex-valued n; the existence results in [8] require that n ∈
C∞(B) and that B is a smooth domain. As B may be freely chosen (subject to
the requirement that D ⊆ B), the second condition is not difficult to satisfy, but it
severely restricts the admissable functions n. Second, the aim is to infer changes in
n from shifts in the Stekloff eigenvalues, but the eigenvalues may not respond in a
significant fashion to certain changes in n and there is no manner in which to tune
their sensitivity. This point has been addressed in [3], [10], and [12] by introducing
a new auxiliary problem that includes such a tuning parameter, but the analysis and
implementation become more involved. In the next section we introduce a slight
modification of the boundary condition in (2.2a)–(2.2c) which resolves both of these
issues.

3. The δ-Stekloff eigenvalue problem. We let B be a smooth domain in Rd
(d = 2, 3) with connected boundary ∂B and connected complement Rd \ B, and we
note that ∂B is a smooth closed surface of dimension d − 1. Before we can define
the main operator of interest, we briefly recall the Laplace-Beltrami operator on ∂B,
denoted by ∆∂B , and its relationship to the Sobolev spaces Hs(∂B). We denote

by ∇∂B , div∂B , curl∂B , and
−−→
curl∂B the surface gradient, surface divergence, scalar

surface curl, and vector surface curl, respectively, and we refer to [18] or [19] for
definitions of these operators. In terms of these surface differential operators the
scalar Laplace-Beltrami operator is given by

(3.1) ∆∂B = −div∂B∇∂B = curl∂B
−−→
curl∂B .

In this definition we have introduced a negative sign (as in [16]) in order to ensure
nonnegativity of the operator, and we summarize the spectral properties of ∆∂B in
the following theorem (cf. [21]).
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Theorem 3.1. There exists an orthonormal basis {Ym}∞m=0 of L2(∂B) and a
nondecreasing divergent sequence of nonnegative real numbers {µm}∞m=0 such that

∆∂BYm = µmYm, m ≥ 0.

The first eigenpair is µ0 = 0 with Y0 = |∂B|−1/2, and µm > 0 for m ≥ 1.

As a result of Theorem 3.1, any ξ ∈ L2(∂B) may be expanded in terms of the
basis {Ym} as

ξ =

∞∑
m=0

ξmYm, ξm := 〈ξ, Ym〉∂B ,

where 〈·, ·〉∂B denotes the inner product on L2(∂B). From [19] it follows that, for any
s ≥ 0, the Sobolev space Hs(∂B) may be defined as

(3.2) Hs(∂B) :=

{
ξ ∈ L2(∂B)

∣∣∣∣∣
∞∑
m=0

(1 + µm)s |ξm|2 <∞

}
,

equipped with the norm ‖·‖Hs(∂B) given by

(3.3) ‖ξ‖2Hs(∂B) :=

∞∑
m=0

(1 + µm)s |ξm|2 .

In the case s = 0, in which H0(∂B) = L2(∂B), we denote by ‖·‖∂B the norm on
L2(∂B) for convenience. We will use this spectral characterization ofHs(∂B) through-
out our analysis.

We now proceed to define the main operator of interest. For a nonnegative number
δ we define the Bessel potential operator Sδ := (I + ∆∂B)−δ : L2(∂B) → L2(∂B),
which may be written as

(3.4) Sδξ =

∞∑
m=0

(1 + µm)−δξmYm,

where ξ has the representation (3.3). We note that this operator is well-defined since
−1 is not an eigenvalue of ∆∂B . A similar operator was previously used in [2, Theorem
5.1] in order to study a different type of spectral characterization of Hs(∂B). We now
summarize some basic properties of the operator Sδ.

Proposition 3.2. For any s ≥ 0, the operator Sδ is an isometric isomorphism
from Hs(∂B) onto Hs+2δ(∂B). In particular, Sδ : L2(∂B) → L2(∂B) is compact
whenever δ > 0. Furthermore, Sδ is a positive self-adjoint operator with respect to the
inner product on L2(∂B).

We see from the definition that S0 coincides with the identity operator on L2(∂B),
and it follows that Sδ cannot be compact when δ = 0. For later use we provide the
following result concerning the summability of the sequence {(1 +µm)−β} for a given
β > 0, which follows as a straightforward consequence of Weyl’s law (cf. [16]).

Proposition 3.3. The sequence {(1 + µm)−β} is summable if and only if β >
d−1
2 .
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With some basic results in hand, we now proceed to the main problem of interest.
We assume that D ⊆ B, and we introduce the auxiliary problem of finding usλ ∈
H1

loc(Rd \B) satisfying

∆usλ + k2usλ = 0 in Rd \B,(3.5a)

∂usλ
∂ν

+ λSδu
s
λ = −∂u

i

∂ν
− λSδui on ∂B,(3.5b)

lim
r→∞

r(d−1)/2
(
∂usλ
∂r
− ikusλ

)
= 0.(3.5c)

We remark that we have written Sδu
s
λ rather than Sδ(u

s
λ|∂B) for convenience, and

for a function with a well-defined trace on ∂B (e.g. a function in H1(B)) we always
assume that Sδ acts in this manner. If we take δ = 0, then S0 is the identity operator
and (3.5a)–(3.5c) reduces to the standard problem (2.2a)–(2.2c). In the case δ > 0,
the fact that Sδ is a compact and positive self-adjoint operator by Proposition 3.2
implies that (3.5a)–(3.5c) is well-posed whenever Im(λ) ≥ 0.

If we choose (3.5a)–(3.5c) as the auxiliary problem in the definition of the modified

far field operator Fλ and relabel it as F (δ)
λ , then by the same reasoning as in the

standard case (cf. [8]) we have the following result.

Theorem 3.4. The modified far field operator F (δ)
λ is injective with dense range

provided there exists no nontrivial solution w ∈ H1(B) of the δ-Stekloff problem

∆w + k2nw = 0 in B,(3.6a)

∂w

∂ν
+ λSδw = 0 on ∂B.(3.6b)

We call a value of λ for which (3.6a)–(3.6b) admits a nontrivial solution a δ-Stekloff
eigenvalue, and it will serve as our target signature for the detection of changes in n.
We conclude this section with the following assumption on the wave number k, which
ensures injectivity of a certain solution operator that we will introduce in Section 4.
We note that this assumption is automatically satisfied whenever Im(n) > 0 on an
open subset of B.

Assumption 3.5. We assume that k is chosen such that there exist no nontrivial
solutions ψ ∈ H1(B) of the homogeneous Dirichlet problem

∆ψ + k2nψ = 0 in B,(3.7a)

ψ = 0 on ∂B.(3.7b)

4. Properties of the δ-Stekloff eigenvalue problem. In this section we in-
vestigate the properties of the δ-Stekloff eigenvalues. Although many of the properties
mirror those of the standard problem, we will see that some significant differences
arise. We begin by introducing a nonhomogeneous version of (3.6a)–(3.6b) in which,
for a given f ∈ L2(B) and h ∈ H−1/2(∂B), we seek w ∈ H1(B) satisfying

∆w + k2nw = f in B,(4.1a)

∂w

∂ν
+ λSδw = h on ∂B.(4.1b)
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A natural question we now address is when (4.1a)–(4.1b) is well-posed. If we multiply
(4.1a) by a test function, integrate by parts, and enforce the boundary condition
(4.1b), then we arrive at an equivalent variational formulation of finding w ∈ H1(B)
satisfying

(4.2) a
(δ)
λ (w,w′) = L(w′) ∀w′ ∈ H1(B),

where the bounded sesquilinear form a
(δ)
λ (·, ·) is given by

(4.3) a
(δ)
λ (w,w′) := (∇w,∇w′)B − k2(nw,w′)B + λ 〈Sδw,w′〉∂B ∀w,w′ ∈ H1(B),

and the bounded antilinear functional L is given by

(4.4) L(w′) := −(f, w′)B + 〈h,w′〉∂B ∀w′ ∈ H1(B).

Here we have used (·, ·)B to denote the inner product on L2(B) and 〈·, ·〉∂B to denote
the duality pairing between H−1/2(∂B) and H1/2(∂B) (with conjugation in the sec-
ond argument). We already introduced the latter notation for the inner product on
L2(∂B), but the context should prevent any confusion in the course of our analysis.

We now reformulate (4.2) as an operator equation in H1(B), and we begin by

defining the operators Â,B(δ)
λ : H1(B)→ H1(B) by means of the Riesz representation

theorem such that

(Âw,w′)H1(B) = (∇w,∇w′)B + k2(w,w′)B

(B(δ)
λ w,w′)H1(B) = −k2((n+ 1)w,w′)B + λ 〈Sδw,w′〉∂B

for all w,w′ ∈ H1(B). We note that, by these definitions, we have

a
(δ)
λ (w,w′) =

((
Â + B(δ)

λ

)
w,w′

)
H1(B)

∀w,w′ ∈ H1(B).

If we also let ` ∈ H1(B) be the unique element such that L(w′) = (`, w′)H1(B) for all
w′ ∈ H1(B), again by means of the Riesz representation theorem, then (4.2) may be
reformulated as the operator equation

w ∈ H1(B),(4.5a) (
Â + B(δ)

λ

)
w = `.(4.5b)

By this equivalence, we may investigate the nonhomogeneous problem (4.1a)–(4.1b)

by studying the operator Â + B(δ)
λ . We first observe that Â is coercive on H1(B)

and hence invertible as a result of the Riesz representation theorem. Moreover, the

operator B(δ)
λ is compact due to boundedness of Sδ and the compact embeddings of

H1(B) into L2(B) and H1/2(∂B) into L2(∂B), and we arrive at the following theorem
and corollary.

Theorem 4.1. The operator Â + B(δ)
λ : H1(B)→ H1(B) is a Fredholm operator

of index zero.

Corollary 4.2. The nonhomogeneous δ-Stekloff problem (4.1a)–(4.1b) is of Fred-
holm type, and in particular it is well-posed whenever λ is not a δ-Stekloff eigenvalue.
In this case the unique solution w ∈ H1(B) satisfies the estimate

(4.6) ‖w‖H1(B) ≤ C
(
‖f‖L2(B) + ‖h‖H−1/2(∂B)

)
.
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This corollary follows immediately from Theorem 4.1 and the equivalence between
(4.1a)–(4.1b) and (4.5a)–(4.5b). We now obtain our first results on the δ-Stekloff
eigenvalues in the following theorem.

Theorem 4.3. The set of δ-Stekloff eigenvalues is discrete without finite accu-
mulation point, and each δ-Stekloff eigenvalue has nonnegative imaginary part.

Proof. We begin with the second assertion. If (λ,w) is an eigenpair of (3.6a)–
(3.6b), then we see from taking the imaginary part of both sides of (4.2) with L = 0
and w′ = w that

−k2(Im(n)w,w)B + Im(λ) 〈Sδw,w〉∂B = 0.

We note that the second term arises from the fact that Sδ is a positive operator. It
follows that

Im(λ) =
k2(Im(n)w,w)B
〈Sδw,w〉∂B

≥ 0,

which we may write since Sδ is injective and w|∂B 6= 0 by virtue of Assumption 3.5.
In addition to verifying the second assertion, this result also informs us that there are
no δ-Stekloff eigenvalues in the lower half-plane, which by Theorem 4.1 implies that

Â + B(δ)
λ is invertible whenever Im(λ) < 0. As a result of the equivalence between

invertibility of Â+B(δ)
λ and well-posedness of (4.1a)–(4.1b), the first assertion follows

from the analytic Fredholm theorem [14, Theorem 8.26]. �

We remark that many of the results established for standard Stekloff eigenvalues in
[3] also hold for δ-Stekloff eigenvalues due to the favorable properties of the operator
Sδ that we stated in Proposition 3.2. We now proceed to study the existence of

eigenvalues, and we begin by defining the Robin-to-Dirichlet operator T
(δ)
z : L2(∂B)→

L2(∂B) by T
(δ)
z h := w

(δ)
h |∂B , where w

(δ)
h ∈ H1(B) is the unique solution of (4.1a)–

(4.1b) with f = 0 and λ = z, i.e. w
(δ)
h satisfies

∆w
(δ)
h + k2nw

(δ)
h = 0 in B,(4.7a)

∂w
(δ)
h

∂ν
+ zSδw

(δ)
h = h on ∂B.(4.7b)

Here we choose z ∈ R such that it does not coincide with any δ-Stekloff eigenvalues,

which is possible since this set is discrete, and by Corollary 4.2 we see that T
(δ)
z is

well-defined. As a consequence of (4.6) and the trace theorem we have∥∥∥T (δ)
z h

∥∥∥
H1/2(∂B)

≤ C ‖h‖L2(∂B) ∀h ∈ L2(∂B),

where C is a constant independent of h, and it follows that T
(δ)
z is a bounded operator

from L2(∂B) into H1/2(∂B). We state the following additional boundedness result
for later use, which is a direct consequence of elliptic regularity (cf. [19]).

Lemma 4.4. For δ ≥ 0 the operator T
(δ)
z is bounded from Hδ(∂B) into Hρ(∂B),

where ρ := min
{
δ + 1, 32

}
.

In particular, the compact embedding of H1/2(∂B) into L2(∂B) implies that

T
(δ)
z : L2(∂B)→ L2(∂B) is compact.
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The operator T
(0)
z was used in [3] and [8] to investigate the standard Stekloff

eigenvalues, as λ is a Stekloff eigenvalue if and only if (z − λ)−1 is an eigenvalue of

T
(0)
z . For δ > 0 this relationship no longer holds between δ-Stekloff eigenvalues and

T
(δ)
z , and in this case the correct operator to consider is given by

(4.8) Ψ(δ)
z := Sδ/2T

(δ)
z Sδ/2 : L2(∂B)→ L2(∂B).

We first note that if T
(δ)
z h = 0, then w

(δ)
h |∂B = 0 and consequently w

(δ)
h = 0 in B by

Assumption 3.5. The boundary condition (4.7b) implies that h = 0, and it follows

that T
(δ)
z is injective. Since the operator Sδ/2 is injective, we conclude that Ψ

(δ)
z

must be injective as well. We now show that the desired relationship holds between

δ-Stekloff eigenvalues and the spectrum of Ψ
(δ)
z , and for later use we prove a slightly

more general result.

Proposition 4.5. For a given δ ≥ 0, let δ1, δ2 be nonnegative numbers such that
δ1 + δ2 = δ. Then a given λ ∈ C is a δ-Stekloff eigenvalue if and only if (z − λ)−1 is

an eigenvalue of the operator Sδ1T
(δ)
z Sδ2 .

Proof. We suppose that λ is a δ-Stekloff eigenvalue with eigenfunction w. If
we consider the variational formulation (4.2) with L = 0 and add the term (z −
λ) 〈Sδw,w′〉∂B to both sides, then we see that w satisfies

(∇w,∇w′)B − k2(nw,w′)B + z 〈Sδw,w′〉∂B = (z − λ) 〈Sδw,w′〉∂B ∀w′ ∈ H1(B).

We define h := (z − λ)Sδ1w, and we observe that

(∇w,∇w′)B − k2(nw,w′)B + z 〈Sδw,w′〉∂B = 〈Sδ2h,w′〉∂B ∀w′ ∈ H1(B).

By definition of T
(δ)
z we see that w|∂B = T

(δ)
z Sδ2h, and it follows that

Sδ1T
(δ)
z Sδ2h = Sδ1(w|∂B) = (z − λ)−1h.

Since w|∂B 6= 0 by Assumption 3.5 and Sδ1 is injective, we conclude that (z− λ)−1 is

an eigenvalue of Sδ1T
(δ)
z Sδ2 . As Sδ1T

(δ)
z Sδ2 is injective, following the previous steps

in reverse order yields the converse result. �

As a consequence of Proposition 4.5 (with δ1 = δ2 = δ
2 ) and compactness of

Ψ
(δ)
z , the spectral theorem for compact operators provides another proof that the δ-

Stekloff eigenvalues are discrete without finite accumulation point, which we already
established in Theorem 4.3. Since Sδ is self-adjoint, it may be easily shown (in a

manner similar to [8]) that T
(δ)
z is self-adjoint whenever n is real-valued, from which

it follows that Ψ
(δ)
z is self-adjoint in this case. We summarize the consequences of this

observation in the following theorem.

Theorem 4.6. If n is real-valued, then Ψ
(δ)
z is self-adjoint, and consequently all

of the δ-Stekloff eigenvalues are real and infinitely many exist. In addition, the eigen-
functions form an orthonormal basis of L2(∂B).

With the exception of some technical points related to the operator Sδ, our analy-
sis of the δ-Stekloff eigenvalue has followed the results for the standard Stekloff eigen-
value problem corresponding to δ = 0. However, we previously mentioned the limited
existence results for standard Stekloff eigenvalues when n is in general complex-valued
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(requiring that n ∈ C∞(B)), and we now proceed to overcome this difficulty for δ-
Stekloff eigenvalues without assuming extra regularity on n. We will take advantage
of a powerful result known as Lidski’s theorem, and before we state the result we
define the notion of a trace class operator (cf. [14] and [20]).

Definition 4.7. An operator T is a trace class operator on a Hilbert space if
there exists a sequence of operators {Tm} for which Tm has rank no greater than m
and

(4.9)

∞∑
m=1

‖T − Tm‖ <∞.

Theorem 4.8. (Lidski’s Theorem) If T is a trace class operator on a Hilbert space
X such that T has finite-dimensional nullspace and Im(Tg, g)X ≥ 0 for every g ∈ X,
then T has an infinite number of eigenvalues.

We first remark that this theorem is not new to the field of inverse scattering
theory; it has been previously used to establish that the far field operator possesses
infinitely many eigenvalues when n is in general complex-valued (cf. [14]). In the

present analysis we will apply this result to the operator Ψ
(δ)
z for sufficiently large

δ depending on the dimension. Injectivity of this operator (under Assumption 3.5)
implies that the nullspace of this operator has finite dimension, and in the subsequent
two lemmas we verify the remaining hypotheses of Lidski’s theorem.

Lemma 4.9. The operator Ψ
(δ)
z satisfies Im

〈
Ψ

(δ)
z h, h

〉
∂B
≥ 0 for all h ∈ L2(∂B).

Proof. We note that since〈
Ψ(δ)
z h, h

〉
∂B

=
〈
Sδ/2T

(δ)
z Sδ/2h, h

〉
∂B

=
〈
T (δ)
z Sδ/2h, Sδ/2h

〉
∂B

and Sδ/2h ∈ L2(∂B) for all h ∈ L2(∂B), it suffices to show the desired result for T
(δ)
z .

Indeed, from the equivalent variational formulation of (4.7a)–(4.7b) we see that for
any h ∈ L2(∂B) we have〈

T (δ)
z h, h

〉
∂B

=
〈
h,w

(δ)
h

〉
∂B

= (∇w(δ)
h ,∇w(δ)

h )B − k2(nw
(δ)
h , w

(δ)
h )B + z

〈
Sδw

(δ)
h , w

(δ)
h

〉
∂B

= (∇w(δ)
h ,∇w(δ)

h )B − k2(nw
(δ)
h , w

(δ)
h )B + z

〈
Sδw

(δ)
h , w

(δ)
h

〉
∂B

.

We note that the third term of the final expression is unchanged by conjugation since
z was chosen to be real and Sδ is a positive operator. In a similar manner we observe
that the first and third terms of this expression are real, and by taking the imaginary
part we conclude that

Im
〈
T (δ)
z h, h

〉
∂B

= −k2(Im(n)w
(δ)
h , w

(δ)
h )B = k2(Im(n)w

(δ)
h , w

(δ)
h )B ≥ 0,

where the final inequality follows from our assumption that Im(n) ≥ 0 a.e. in D. �

Lemma 4.10. The operator Ψ
(δ)
z is trace class provided that δ > d

2 − 1.
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Proof. For each M ∈ N0 we consider the operator I(M) : L2(∂B) → L2(∂B)
defined by

I(M)

( ∞∑
m=0

ξmYm

)
:=

M−1∑
m=0

ξmYm.

In other words, I(M) is the orthogonal projection of L2(∂B) onto the span of {Y0, . . . , YM−1},
and as a result we see that I(M) is a bounded linear operator on L2(∂B) with rank M .

We will show that the sequence {I(M)Ψ
(δ)
z } satisfies Definition 4.7 whenever δ > d

2−1.

As a consequence of Lemma 4.4 we see that the operator T
(δ)
z Sδ/2 is bounded from

L2(∂B) into Hρ(∂B) with ρ = min
{
δ + 1, 32

}
. For a given h ∈ L2(∂B) we define

ξh := T
(δ)
z Sδ/2h, and since ξh ∈ Hρ(∂B) and {µm} is a nondecreasing sequence it

follows that∥∥∥(Ψ(δ)
z − I(M)Ψ(δ)

z )h
∥∥∥
∂B

=
∥∥∥Sδ/2ξh − I(M)Sδ/2ξh

∥∥∥
∂B

=

( ∞∑
m=M

(1 + µm)−δ |ξh,m|2
)1/2

=

( ∞∑
m=M

(1 + µm)−δ−ρ(1 + µm)ρ |ξh,m|2
)1/2

≤ (1 + µM )−
1
2 (δ+ρ) ‖ξh‖Hρ(∂B) .

By Lemma 4.4 there exists a constant C independent of h for which ‖ξh‖Hρ(∂B) ≤
C ‖h‖∂B , and we see that∥∥∥Ψ(δ)

z − I(M)Ψ(δ)
z

∥∥∥ ≤ C(1 + µM )−
1
2 (δ+ρ) ∀M ∈ N.

Under the hypothesis δ > d
2 − 1 we obtain ρ ≥ d

2 , as ρ is defined as the minimum of

two terms that are bounded below by d
2 for d = 2, 3. Combining these inequalities

yields

1

2
(δ + ρ) >

d− 1

2
,

and from Proposition 3.3 it follows that

∞∑
M=0

(1 + µM )−
1
2 (δ+ρ) <∞.

By the comparison theorem and Definition 4.7 we conclude that Ψ
(δ)
z is a trace class

operator. �

We now combine the previous lemmas with Lidski’s theorem in order to obtain
our general existence result.

Theorem 4.11. If δ > d
2 − 1, then there exist infinitely many δ-Stekloff eigenval-

ues.
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Proof. By Lemmas 4.9–4.10 we may apply Lidski’s theorem in order to conclude

that Ψ
(δ)
z has infinitely many eigenvalues whenever δ > d

2 − 1. We showed in Proposi-
tion 4.5 that there is a one-to-one correspondence between these eigenvalues and the
δ-Stekloff eigenvalues, and the result follows. �

4.1. Detection of δ-Stekloff eigenvalues from far field data. In this section
we establish that δ-Stekloff eigenvalues can be detected from far field data, which is
essential for their potential application in nondestructive testing of materials. For
the standard Stekloff eigenvalues corresponding to δ = 0, it has been shown in [8]
and [3] that eigenvalues may be detected from far field data using either the classical
linear sampling method (LSM) or the generalized linear sampling method (GLSM),
respectively. It can be easily seen that our introduction of the operator Sδ does
not affect any of these results, and as a consequence we only provide the relevant
assumptions and theorems in order to justify the use of the generalized linear sampling
method for the case δ > 0. We refer to [3] for further discussion on the following
assumption.

Assumption 4.12. For a given λ ∈ C, we assume that the modified far field op-

erator F (δ)
λ has dense range, and we assume that the problem of seeking w ∈ H1(B)

such that

∆w + k2w = 0 in B,

∂w

∂ν
+ λSδw = 0 on ∂B,

has only the trivial solution w = 0. The latter condition is equivalent to the assump-
tion that λ is not a δ-Stekloff eigenvalue corresponding to n = 1 in D.

For a given λ ∈ C satisfying Assumption 4.12, we consider the functional

Jα(Φ∞z , g) := α

∣∣∣∣(F (δ)
λ g, g

)
L2(Sd−1)

∣∣∣∣+
∥∥∥F (δ)

λ g − Φ∞z

∥∥∥2
L2(Sd−1)

,

where α > 0, Φ∞z is the far field pattern of the fundamental solution of the Helmholtz

equation in Rd, g ∈ L2(Sd−1), F
(δ)
λ is the auxiliary far field operator corresponding

to the auxiliary problem (3.5a)–(3.5c), and F (δ)
λ = F − F (δ)

λ is the modified far field
operator. The nonnegativity of Jα allows us to define the functional

jα(Φ∞z ) := inf
g∈L2(Sd−1)

Jα(Φ∞z , g).

The following theorem serves as the justification for the generalized linear sam-
pling method.

Theorem 4.13. Suppose that λ ∈ C satisfies Assumption 4.12, and for a given
z ∈ B consider a minimizing sequence {gz,λα } defined by

Jα(Φ∞z , g
z,λ
α ) ≤ jα(Φ∞z ) + Cα,

where C > 0 is a constant independent of α. Then λ is a δ-Stekloff eigenvalue if and

only if the set of points z such that

∣∣∣∣(F (δ)
λ gz,λα , gz,λα

)
L2(Sd−1)

∣∣∣∣ is bounded as α → 0 is

nowhere dense in B.
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Theorem 4.13 suggests that we may seek eigenvalues as peaks in the graph of the
indicator function

I(λ) := lim sup
α→0

∣∣∣∣(F (δ)
λ gz,λα , gz,λα

)
L2(Sd−1)

∣∣∣∣ ,
possibly averaged over multiple choices of z ∈ B. In practice we consider a slightly
different functional Jα that accounts for the noise in the measured far field operator
F , and we regularize this functional in order to compute a minimizer rather than a
minimizing sequence. We refer to [3] for further details and to [10] for an implemen-
tation of the generalized linear sampling to a different class of eigenvalue problems.
We will discuss the practical application of this theorem in Section 6.

5. Stability of δ-Stekloff eigenvalues. Now that we have addressed the fun-
damental issue of existence of eigenvalues in Section 4, we direct our attention to the
sensitivity of δ-Stekloff eigenvalues to changes in the refractive index n and in the
parameter δ. We begin with two rough perturbation estimates for changes in n and
δ, respectively, in a similar manner to that derived in [8]. First, we suppose that n0 is
real-valued and that (λ0, w0) is an eigenpair for the δ-Stelkoff problem with n = n0.
If n0 is perturbed to some real-valued refractive index n1 with n1 − n0 small, then as
in [8] we see that the perturbed eigenvalue λ1 must satisfy the rough estimate

(5.1) λ1 − λ0 ≈
k2((n1 − n0)w0, w0)B
〈Sδw0, w0〉∂B

.

In the case δ = 0 we recover the same estimate as in [8].
By the same technique, if (λ(δj), w(δj)) is a δ-Stekloff eigenpair for δ = δj , j = 1, 2,

then it follows that

(5.2) λ(δ2) − λ(δ1) ≈ −
λ(δ1)

〈
(Sδ2 − Sδ1)w(δ1), w(δ1)

〉
∂B〈

Sδ1w
(δ1), w(δ1)

〉
∂B

.

We remark that we are considering the absolute change in the eigenvalues rather than
the relative change. The reason is that we would like to view shifts in the eigenvalues
due to changes in n, and the magnitude of the eigenvalue plays no role in that analysis.
We will use numerical examples in order to investigate more complicated media in
Section 6, and we will continue to measure absolute change.

We have now obtained two rough estimates for the shift in an eigenvalue due to
changes in n and δ. The formal asymptotic methods used to arrive at (5.1) and (5.2)
are only valid for real coefficients, and as a consequence we have no such information
in the case of complex-valued n. However, we are able to say something in the

following subsections about the solution operator Ψ
(δ)
z under these perturbations,

even for complex coefficients.

5.1. Stability with respect to n. We begin with perturbations of n, and we

write Ψ
(δ)
z,n in order to emphasize the refractive index n. We first factorize this operator

in order to make the perturbation explicit, as was done for a closely related generalized
Robin eigenvalue problem in [11], and then we apply the Sobolev embedding theorem

(cf. [1]) to obtain estimates on the norm of the operator Ψ
(δ)
z,n1 −Ψ

(δ)
z,n0 . We again let

n1 be the refractive index obtained by perturbing the fixed reference medium given
by n0. We define the following three operators.
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(i) We define W
(δ)
z,n0 : L2(∂B) → L2(B) by W

(δ)
z,n0h := w, where w ∈ H1(B)

satisfies (4.7a)–(4.7b) with n = n0.
(ii) We define Mn1,n0

: L2(B)→ L2(B) by Mn1,n0
f := k2(n1 − n0)f .

(iii) We define V
(δ)
z,n1 : L2(B) → L2(∂B) by V

(δ)
z,n1f := v|∂B , where v ∈ H1(B)

satisfies (4.1a)–(4.1b) with n = n1 and h = 0.
If we let w1, w0 ∈ H1(B) satisfy (4.7a)–(4.7b) with h = Sδ/2g for a given g ∈

L2(∂B) and n = n1, n0, respectively, then we see that w := w1−w0 ∈ H1(B) satisfies

∆w + k2n2w = k2(n2 − n1)w0 in B,

∂w

∂ν
+ zSδw = 0 on ∂B.

It follows from our definitions that(
Ψ(δ)
z,n1
−Ψ(δ)

z,n0

)
g = Sδ/2(w1|∂B)− Sδ/2(w0|∂B)

= Sδ/2(w|∂B)

= Sδ/2V
(δ)
z,n1

[
k2(n2 − n1)w0

]
= Sδ/2V

(δ)
z,n1

Mn1,n0W
(δ)
z,n0

Sδ/2g,

and we obtain the factorization

(5.3) Ψ(δ)
z,n1
−Ψ(δ)

z,n0
= Sδ/2V

(δ)
z,n1

Mn1,n0
W (δ)
z,n0

Sδ/2.

Our present aim is to use this factorization in order to obtain a norm estimate of

Ψ
(δ)
z,n1 −Ψ

(δ)
z,n0 in terms of the perturbation n1−n0, and the proliferation of operators

involved requires clear notation about what operator norm is being used in a given
expression. As a result we denote the operator norm of a linear operator A between
Banach spaces X and Y as ‖A‖X→Y .

We first investigate the operator norm of Mn1,n0
W

(δ)
z,n0Sδ/2, which may be ex-

pressed as

(5.4)
∥∥∥Mn1,n0

W (δ)
z,n0

Sδ/2

∥∥∥
L2(∂B)→L2(B)

= sup
g∈L2(∂B)

g 6=0

∥∥∥Mn1,n0
W

(δ)
z,n0Sδ/2g

∥∥∥
L2(B)

‖g‖L2(∂B)

.

Since Sδ/2 is an isometric isomorphism from L2(∂B) onto Hδ(∂B) we may instead
write (5.4) in terms of h = Sδ/2g as

∥∥∥Mn1,n0
W (δ)
z,n0

Sδ/2

∥∥∥
L2(∂B)→L2(B)

= sup
h∈Hδ(∂B)

h6=0

∥∥∥Mn1,n0W
(δ)
z,n0h

∥∥∥
L2(B)

‖h‖Hδ(∂B)

= k2 sup
h∈Hδ(∂B)

h6=0

∥∥∥(n1 − n0)w
(δ)
h

∥∥∥
L2(B)

‖h‖Hδ(∂B)

,

(5.5)

where we have used w
(δ)
h to denote the solution of (4.7a)–(4.7b) with n = n0 for

convenience. We now wish to estimate this quantity. By the regularity results in
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[6] we know that w
(δ)
h ∈ H

3
2+δ(B) whenever h ∈ Hδ(∂B) (for 0 ≤ δ ≤ 1

2 ), and

the Sobolev embedding theorem implies that w
(δ)
h ∈ C0

b (B) (the space of bounded
continuous functions in B) with continuous embedding if δ > 0. In the case δ = 0
and d = 2 we would need to apply Lp-embeddings in a similar manner, and we would
obtain a different norm of n1 − n0 in the subsequent results. We see that∥∥∥(n1 − n0)w

(δ)
h

∥∥∥
L2(B)

=

(∫
B

|n1 − n0|2
∣∣∣w(δ)
h

∣∣∣2 dx)1/2

≤
(∫

B

|n1 − n0|2 dx
)1/2 ∥∥∥w(δ)

h

∥∥∥
C0
b (B)

≤ C ‖n1 − n0‖L2(B) ‖h‖Hδ(∂B) ,

where the constant C results from the embedding H
3
2+δ(B) ↪→ C0

b (B), the regularity
result, and the well-posedness estimate (4.6) for n = n0. In particular, this constant
is independent of n1. With this estimate in hand we see that (5.5) becomes

(5.6)
∥∥∥Mn1,n0W

(δ)
z,n0

Sδ/2

∥∥∥
L2(∂B)→L2(B)

≤ C ‖n1 − n0‖L2(B) ,

and from the factorization (5.3) we obtain

(5.7)
∥∥∥Ψ(δ)

z,n1
−Ψ(δ)

z,n0

∥∥∥
L2(∂B)→L2(∂B)

≤ C
∥∥∥Sδ/2V (δ)

z,n1

∥∥∥
L2(B)→L2(∂B)

‖n1 − n0‖L2(B) .

The term ‖n1 − n0‖L2(B) represents the magnitude of the perturbation of n0 (at least

in the L2-norm), but the operator norm of Sδ/2V
(δ)
z,n1 still depends on n1. We now

show that this term is uniformly bounded in n1 whenever the perturbation is small.

We begin by defining the operator Ṽ
(δ)
z,n1 : L2(B)→ H1(B) by Ṽ

(δ)
z,n1f := v, where

v ∈ H1(B) satisfies (4.1a)–(4.1b) with n = n1 and h = 0, and we note that

V (δ)
z,n1

= Γ∂BṼ
(δ)
z,n1

,

where Γ∂B : H1(B) → L2(∂B) is the trace operator on ∂B. If v = Ṽ
(δ)
z,n1f for some

f ∈ L2(B), then it follows that v must satisfy

∆v + k2n0v = f − k2(n1 − n0)v in B,

∂v

∂ν
+ zSδv = 0 on ∂B,

which implies that

(5.8) Ṽ (δ)
z,n1

f = v = Ṽ (δ)
z,n0

[
f − k2(n1 − n0)v

]
=
(
Ṽ (δ)
z,n0
− Ṽ (δ)

z,n0
Mn1,n0

Ṽ (δ)
z,n1

)
f.

Since (5.8) holds for all f we see that

(5.9)
(
I + Ṽ (δ)

z,n0
Mn1,n0

)
Ṽ (δ)
z,n1

= Ṽ (δ)
z,n0

.

Elliptic regularity implies that range(Ṽ
(δ)
z,n1) ⊆ H2(B), and consequently we may con-

sider I + Ṽ
(δ)
z,n0Mn1,n0

as an operator from H2(B) to itself. It follows that if

(5.10) ‖Mn1,n0
‖H2(B)→L2(B) <

∥∥∥Ṽ (δ)
z,n0

∥∥∥−1
L2(B)→H2(B)
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then the operator I+ Ṽ
(δ)
z,n0Mn1,n0 is invertible, and from a Neumann series expansion

we obtain the estimate

(5.11)
∥∥∥Ṽ (δ)

z,n1

∥∥∥
L2(B)→H2(B)

≤

∥∥∥Ṽ (δ)
z,n0

∥∥∥
L2(B)→H2(B)

1−
∥∥∥Ṽ (δ)

z,n0

∥∥∥
L2(B)→H2(B)

‖Mn1,n0
‖H2(B)→L2(B)

.

Since H2(B) is continuously embedded into C0
b (B) by the Sobolev embedding theo-

rem, we may take a similar approach as we did above in order to show that

(5.12) ‖Mn1,n0‖H2(B)→L2(B) ≤ C ‖n1 − n0‖L2(B) ,

where the constant C depends only upon the continuous embedding of H2(B) into
C0
b (B). In particular, this constant is independent of n1. Thus, we observe that for

sufficiently small ‖n1 − n0‖L2(B) the condition (5.10) is satisfied and (5.11) follows

in turn. The result is that
∥∥∥Ṽ (δ)

z,n1

∥∥∥
L2(B)→H2(B)

is uniformly bounded in this case,

and since Sδ/2 and Γ∂B are bounded and independent of n1 we obtain the following
theorem as a direct consequence of (5.7).

Theorem 5.1. Assume that δ > 0. If n0 is fixed and ‖n1 − n0‖L2(B) is suffi-
ciently small, then there exists a constant Cn0

independent of n1 such that

(5.13)
∥∥∥Ψ(δ)

z,n1
−Ψ(δ)

z,n0

∥∥∥
L2(∂B)→L2(∂B)

≤ Cn0
‖n1 − n0‖L2(B) .

5.2. Stability with respect to δ. We now consider stability with respect to
the parameter δ. Unlike perturbations of n, we have complete control over the value
of δ, and as a result the main role of this analysis is to compare the cases δ > 0 and
δ = 0. For the remainder of this section we will primarily work with Sobolev spaces on
the boundary ∂B, and for ease of notation we define ‖A‖s,t := ‖A‖Hs(∂B)→Ht(∂B) for

a bounded linear operator A : Hs(∂B)→ Ht(∂B). We recall that H0(∂B) = L2(∂B)
by definition.

Our goal in this section is to establish that the δ-Stekloff eigenvalues converge to

the standard Stekloff eigenvalues as δ → 0+. Since Ψ
(δ)
z is bounded for δ ≥ 0, this

result would follow from showing that Ψ
(δ)
z → Ψ

(0)
z in operator norm as δ → 0+ (cf.

[17]). However, for technical reasons we instead consider the operator Ψ̃
(δ)
z := SδT

(δ)
z ,

whose eigenvalues coincide with those of Ψ
(δ)
z as a consequence of Proposition 4.5

(with δ1 = δ and δ2 = 0). We begin with the following technical lemma.

Lemma 5.2. The operator Sδ : H1/2(∂B)→ L2(∂B) converges in operator norm
to the inclusion operator I : H1/2(∂B)→ L2(∂B) as δ → 0+.

Proof. For a given ξ ∈ H1/2(∂B) we see that

‖(Sδ − I)ξ‖L2(∂B) =

∥∥∥∥∥
∞∑
m=0

[
(1 + µm)−δ − 1

]
ξmYm

∥∥∥∥∥
L2(∂B)

=

( ∞∑
m=0

[
1− (1 + µm)−δ

]2 |ξm|2)1/2

=

( ∞∑
m=0

[
1− (1 + µm)−δ

(1 + µm)1/4

]2
(1 + µm)1/2 |ξm|2

)1/2

.

(5.14)
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We have introduced the term (1 + µm)1/2 into this equation in order to obtain the

H1/2(∂B)-norm of ξ, and we now seek to control the term 1−(1+µm)−δ

(1+µm)1/4
. While this

sequence is not monotonic in m, we now show that it is monotonic eventually, i.e.
for m ≥ m∗, and more importantly that m∗ may be chosen independently of δ. We
consider the function

ϕδ(t) :=
1− t−δ

t1/4
, t ∈ [1,∞),

and we observe that ϕδ is decreasing on the interval
(
(4δ + 1)1/δ,∞

)
for each δ > 0.

Further calculations show that

sup
δ>0

(4δ + 1)1/δ = lim
δ→0

(4δ + 1)1/δ = e4,

and we conclude that ϕδ is decreasing on (e4,∞) for all δ > 0. Since the sequence
{µm} increases without bound we may choose m∗ ∈ N0 such that 1 + µm∗ > e4,

and it follows that
{

1−(1+µm)−δ

(1+µm)1/4

}
is a non-increasing sequence for m ≥ m∗. As a

consequence we may split the final series in (5.14) by this index in order to obtain

‖(Sδ − I)ξ‖L2(∂B) ≤ max
0≤m≤m∗

{
1− (1 + µm)−δ

(1 + µm)1/4

}
‖ξ‖H1/2(∂B) ,

which implies the norm bound

(5.15) ‖Sδ − I‖ 1
2 ,0
≤ max

0≤m≤m∗

{
1− (1 + µm)−δ

(1 + µm)1/4

}
.

Since

lim
δ→0

1− (1 + µm)−δ

(1 + µm)1/4
= 0

for each m ∈ N0 and the maximum in (5.15) is taken over finitely many such terms,
we conclude that ‖Sδ − I‖ 1

2 ,0
→ 0 as δ → 0+. �

Theorem 5.3. The operator Ψ̃
(δ)
z : L2(∂B) → L2(∂B) converges in operator

norm to Ψ̃
(0)
z : L2(∂B)→ L2(∂B) as δ → 0+.

Proof. We first observe that by the triangle inequality we have

(5.16)
∥∥∥Ψ̃(δ)

z − Ψ̃(0)
z

∥∥∥
0,0
≤ ‖Sδ‖ 1

2 ,0

∥∥∥T (δ)
z − T (0)

z

∥∥∥
0, 12

+ ‖Sδ − I‖ 1
2 ,0

∥∥∥T (0)
z

∥∥∥
0, 12

.

From Lemma 5.2 we already know that ‖Sδ − I‖ 1
2 ,0
→ 0 as δ → 0+, which also implies

that ‖Sδ‖ 1
2 ,0

is bounded as δ → 0+. Thus, it suffices to show that
∥∥∥T (δ)

z − T (0)
z

∥∥∥
0, 12

→

0 as δ → 0+, and this pursuit comprises the remainder of the proof. For a given

h ∈ L2(∂B) we consider the solution w
(δ)
h of (4.7a)–(4.7b) for each δ ≥ 0, and we

recall that w
(δ)
h |∂B = T

(δ)
z h. For δ > 0 we see that w := w

(δ)
h −w

(0)
h ∈ H1(B) satisfies

∆w + k2nw = 0 in B,
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∂w

∂ν
+ zSδw = z(I − Sδ)w(0)

h on ∂B,

and by definition of T
(δ)
z we obtain

(T (δ)
z − T (0)

z )h = w|∂B = T (δ)
z

[
z(I − Sδ)T (0)

z h
]

= zT (δ)
z (I − Sδ)T (0)

z h.

Since this result holds for all h ∈ L2(∂B) we arrive at the factorization

(5.17) T (δ)
z − T (0)

z = zT (δ)
z (I − Sδ)T (0)

z ,

and we immediately obtain the estimate

(5.18)
∥∥∥T (δ)

z − T (0)
z

∥∥∥
0, 12

≤ |z|
∥∥∥T (δ)

z

∥∥∥
0, 12

‖I − Sδ‖ 1
2 ,0

∥∥∥T (0)
z

∥∥∥
0, 12

.

If z = 0, then the operator T
(δ)
z is clearly independent of δ and we have nothing to

prove. Thus, we assume that z 6= 0. Since ‖I − Sδ‖ 1
2 ,0
→ 0 as δ → 0+ we need only

show that
∥∥∥T (δ)

z

∥∥∥
0, 12

is bounded as δ → 0+. We may rewrite (5.17) as

(5.19) T (δ)
z

[
I − z(I − Sδ)T (0)

z

]
= T (0)

z ,

and since ‖I − Sδ‖ 1
2 ,0
→ 0 as δ → 0+ we see that δ > 0 may be taken sufficiently

small in order to guarantee that

‖I − Sδ‖ 1
2 ,0

< |z|−1
∥∥∥T (0)

z

∥∥∥−1
0, 12

.

In this case the operator I− z(I−Sδ)T (0)
z is invertible, and it follows from (5.19) and

a Neumann series expansion that

∥∥∥T (δ)
z

∥∥∥
0, 12

≤

∥∥∥T (0)
z

∥∥∥
0, 12

1− |z|
∥∥∥T (0)

z

∥∥∥
0, 12

‖I − Sδ‖ 1
2 ,0

.

Thus, we see that
∥∥∥T (δ)

z

∥∥∥
0, 12

is bounded as δ → 0+, and from (5.18) we conclude that∥∥∥T (δ)
z − T (0)

z

∥∥∥
0, 12

→ 0 as δ → 0+. �

The importance of Theorem 5.3 lies in the observation that the δ-Stekloff eigenval-
ues must converge to the standard Stekloff eigenvalues as δ → 0+, and consequently
the δ-Stekloff eigenvalue problem may be viewed as a perturbation of the standard
problem. However, we note that this result does not imply the existence of infinitely
many standard Stekloff eigenvalues for R2, even though the result holds for δ-Stekloff
eigenvalues whenever δ > 0. As a final note we remark that from (5.15) it can be
shown that ‖Sδ − I‖ 1

2 ,0
= O(δ) as δ → 0+, and in the proof of Theorem 5.3 we see

that this convergence rate holds for
∥∥∥Ψ̃

(δ)
z − Ψ̃

(0)
z

∥∥∥
0,0

as well.
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6. Numerical examples . Up to this point we have examined the theoretical
properties of δ-Stekloff eigenvalues, and in particular we established the existence of
infinitely many eigenvalues and their convergence to the standard Stekloff eigenval-
ues. We also showed that the eigenvalues are stable with respect to changes in the
coefficient n, but beyond the rough perturbation estimate (5.1) for real-valued n we
have no information on the sensitivity of any particular eigenvalue. In this section we
investigate this question through a series of numerical examples, but we first introduce
a further modification of δ-Stekloff eigenvalues that provides a greater level of control
over their sensitivity to changes in n.

For some σ > 0 we define the operator Sδ,σ : L2(∂B) → L2(∂B) by Sδ,σ :=
(I + ∆∂B + σP0)−1, where P0 : L2(∂B)→ L2(∂B) is the orthogonal projection onto
ker(∆∂B) = span{Y0}. We may write this operator explicitly as

(6.1) Sδ,σξ = (1 + σ)−δξ0Y0 +

∞∑
m=1

(1 + µm)−δξmYm.

We note that the only change is to the lowest order Fourier coefficient of ξ in the eigen-
basis {Ym}, and consequently all of the results that we have proved for Sδ still hold,
with the exception that Sδ,σ is no longer an isometry from Hs(∂B) onto Hs+2δ(∂B).
However, we could equivalently characterize the Sobolev spaces Hs(∂B) in terms of
the spectrum of ∆∂B + σP0 in order to recover this result.

The motivation for this modification of Sδ is that, for case of B = D with D
chosen to be the unit disk in R2 and constant n, the δ-Stekloff eigenvalues form a

sequence {λ(δ)m }m≥0 given by

(6.2) λ(δ)m = − k
√
nJ ′m(k

√
n)

(1 +m2)−δJm(k
√
n)

= (1 +m2)δλ(0)m ,

where Jm is the Bessel function of the first kind of order m and {λ(0)m } is the sequence
of standard Stekloff eigenvalues (cf. [8] for the computation with δ = 0). We note
that this sequence includes multiplicity of the eigenvalues, which is 1 for m = 0 (with
eigenfunction 1) and 2 for m > 0 (with eigenfunctions given by the nonconstant
spherical harmonics {Ym}, which are {e−imθ, eimθ}m>0 for d = 2). A similar result in
terms of the three-dimensional spherical harmonics can also be seen to hold for the

case of a ball in R3. It follows that the shift in an eigenvalue λ
(δ)
m is amplified by a

factor of (1 +m2)δ compared to the corresponding standard Stekloff eigenvalue λ
(0)
m .

However, for m = 0 we have (1+m2)δ = 1 and the shift is identical. This observation

is significant because for δ = 0 the lowest order eigenvalue λ
(0)
0 is most easily detected

from far field data and has been noted as being the eigenvalue most robust to noisy

data (cf. [8]), but for δ > 0 the corresponding δ-Stekloff eigenvalue λ
(δ)
0 does not

benefit from any amplification in its sensitivity. We will justify the detectability of the
most sensitive δ-Stekloff eigenvalue for two domains in Section 6.5. By introducing
the parameter σ > 0 we improve this amplication factor to (1 + σ)δ > 1 for the
unit disk, and we will provide examples in this section in which we clearly see this
amplification factor for more complicated domains. With the exception of Section
6.4, we choose σ = 1 for the remainder of our discussion, and we will continue to refer
to the associated eigenvalues as δ-Stekloff eigenvalues.

6.1. Description of numerical examples. We restrict our attention to numer-
ical examples in R2, and we compute eigenvalues and eigenfunctions using the finite
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element method. We apply a standard finite element discretization of the δ-Stekloff
eigenvalue problem (4.2) (with L = 0) with P1 finite elements using FreeFem++ [15],
read the appropriate matrices into MATLAB, and use the built-in eigs function. We
discretize the operator Sδ,σ using the finite element nodal basis, and we truncate to
101 Fourier coefficients in the Laplace-Beltrami eigenbasis. In order to provide a di-
rect comparison with the results in [8], we perform our examples with k = 1 and a
constant value of n = 4 in D, for which we consider two possibilities. First, we choose
the support D to be in the shape of a kite parametrized by

r(t) = (0.5(cos(t) + 0.65 cos(2t)− 0.3), sin(t)), 0 ≤ t ≤ 2π.

Second, we choose the support D to be an L-shaped domain given by removing the
square [0.1, 1.1]× [−1.1,−0.1] from the square [−0.9, 1.1]× [−1.1, 0.9]. We choose B
to be the disk of radius 1.5 centered at the origin, which contains both the kite and
L-shaped domains as required. We refer to Figure 6.1 for a graphical representation
of each domain and for a plot of two eigenfunctions corresponding to each choice of
D. We note that the eigenfunctions have been normalized such that ‖w‖L2(∂B) = 1.
We will see that the eigenfunctions displayed in the left column correspond to the
eigenvalues that are most sensitive to the overall change in n we will consider in the
first example. As these eigenfunctions have large magnitude throughout most of D
and they have small boundary values, this result agrees with what we would expect
from the rough perturbation estimate (5.1).

6.2. Sensitivity of eigenvalues to overall changes in n. We first examine
the sensitivity of the eigenvalues to an overall change in the constant refractive index
n = 4. In Figure 6.2 we plot the magnitude of the absolute shift in each eigenvalue as
n ranges from the reference value of n = 4 to n = 4.1. We perform this test for both
the kite and L-shaped domain with δ = 0 and δ = 1. We observe that at least one
eigenvalue displays a significant shift in all four cases, but in the case δ = 1 this shift
is much greater for the most sensitive eigenvalue (λ15 = −24.0928 for the kite domain
and λ17 = −8.52 for the L-shaped domain). In particular, the shift is amplified by
a factor of 2 in both cases, as we would expect in the case of the unit disk that we
discussed at the beginning of this section. We have observed in further testing that
the sensitivity may be improved by choosing higher values of δ and σ.

6.3. Sensitivity of eigenvalues to circular flaws in n. We now examine the
sensitivity of the eigenvalues to a circular flaw in the constant refractive index n = 4,
and for consistency we adopt the same approach taken in [8] and [12]. In particular,
given a point (xc, yc) and a positive number rc, we define the flawed refractive index
nc in D such that nc = 1 in the disk of radius rc centered at (xc, yc) and nc = n = 4
otherwise. This choice is meant to simulate the detection of a void or cavity that has
formed in a medium. For both the kite and the L-shaped domain we fix rc = 0.05 and
yc = 0, and we consider −0.2 ≤ xc ≤ −0.6 for the kite and −0.4 ≤ xc ≤ 0.8 for the
L-shaped domain. In Figure 6.3 we plot the magnitude of the absolute shift in each
eigenvalue as xc varies. We perform this test for both δ = 0 and δ = 1. We observe
that at least one eigenvalue displays a significant shift in all four cases, but in the case
δ = 1 this shift is much greater for the most sensitive eigenvalue. As in the previous
example, the shift is amplified by a factor of 2. We notice that in Figure 6.3d some
of the curves display a great deal of variation over the domain. This observation is
likely explained by the rather complicated eigenfunctions for the L-shaped domain,
as seen in Figure 6.1d.
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(a) kite, λ = −24.0928 (b) kite, λ = −17.8471

(c) L-shaped domain, λ = −8.52 (d) L-shaped domain, λ = 1.2447

Fig. 6.1: Plots showing two δ-Stekloff eigenfunctions for the kite (top row) and the
L-shaped domain (bottom row) with δ = 1.

6.4. The influence of σ on the eigenvalues. In Figure 6.4 we show the δ-
Stekloff eigenvalues corresponding to multiple values of σ, namely σ = 0, 1, 2, 3, 4,
for n = 4 and n = 4.1. We observe that most of the eigenvalues do not exhibit
a noticeable shift, as seen in Figure 6.2, and these eigenvalues also appear to be
unaffected by changes in σ. However, the eigenvalues noted to be most sensitive to
changes in n in Figures 6.2 and 6.3 can be seen to depend strongly on σ, as they
translate to the right as σ increases. More importantly, we see that the gap between
these eigenvalues for n = 4 and n = 4.1 increases as σ increases, which clarifies the
role of σ as an amplification factor on the sensitivity of these eigenvalues.

6.5. Detection of eigenvalues from far field data. Finally, we justify our
assertion that the most sensitive eigenvalue is detectable from far field data, and we
return to the case σ = 1 for the remainder of our discussion. In Section 4.1 we
provided the relevant results from [3] that justify the use of the generalized linear
sampling method (GLSM) for detecting δ-Stekloff eigenvalues from far field data, and
we referred to [8] for detection using the classical linear sampling method (LSM). The
central idea is to construct an indicator function that may be evaluated over a range
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(a) kite, δ = 0 (b) kite, δ = 1

(c) L-shaped domain, δ = 0 (d) L-shaped domain, δ = 1

Fig. 6.2: Plots showing the magnitude of the shift in the standard Stekloff eigenvalues
(left column) and δ-Stekloff eigenvalues with δ = 1 (right column) for both a kite (top
row) and an L-shaped domain (bottom row) due to an overall change in the refractive
index n. We observe that the maximum sensitivity is significantly greater for δ = 1.

of the eigenparameter λ and which gives large values near an eigenvalue and small
values away from an eigenvalue. We then seek eigenvalues as peaks in the graph of
this indicator function. We refer to [3] and [10] for examples of this implementation,

and we denote the resulting indicator function as I(gglsmλ ) for each λ ∈ C considered.
For simplicity we show in Figure 6.5 the detection of the most sensitive eigenvalue

for each choice of D (based on the results of Figures 6.2 and 6.3) using the linear
sampling method described in [8]. We plot the eigenvalues obtained using the finite
element method with red markers for comparison, and we see that the peaks of the
LSM indicator function agree with many of the eigenvalues. In particular, the largest
peak corresponds to the most sensitive eigenvalue for each choice ofD (λ15 = −24.0928
for the kite domain and λ17 = −8.52 for the L-shaped domain). For each example we
have applied multiplicative uniform noise as in [8], which leads to a 1% relative error
in the synthetic far field data. The presence of noise often leads to missed eigenvalues
(cf. [8], [10], [12], and [13]) as we see in Figure 6.5a. In the absence of noise we
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(a) kite, δ = 0 (b) kite, δ = 1

(c) L-shaped domain, δ = 0 (d) L-shaped domain, δ = 1

Fig. 6.3: Plots showing the magnitude of the shift in the standard Stekloff eigenvalues
(left column) and δ-Stekloff eigenvalues with δ = 1 (right column) for both a kite (top
row) and an L-shaped domain (bottom row) due to a circular flaw in the refractive
index n. We observe that the maximum sensitivity is significantly greater for δ = 1.

have observed that all of the eigenvalues in this range are detected, and even higher
levels of noise still allow for a reliable detection of the most sensitive eigenvalue in
each case. We note that for each λ the auxiliary problem (3.5a)–(3.5c) was computed
using separation of variables, which is possible in this case since B is a disk.

We see that for the simple examples we have considered the δ-Stekloff eigenvalues
(with σ = 1) display a greater shift due to changes in n than the standard Stekloff
eigenvalues corresponding to δ = 0, and we have demonstrated that they can be
detected from far field data. We conclude this section by remarking that for a constant
complex-valued n we obtain similar results to the examples we have considered.

7. Conclusion. In this paper we have introduced a modification of the Stekloff
eigenvalue problem involving an operator Sδ related to the Laplace-Beltrami operator
on the boundary of the domain, and we have shown that this new δ-Stekloff problem
overcomes two persistent difficulties associated with this class of eigenvalue problems.
First, we applied Lidski’s theorem in order to prove that infinitely many δ-Stekloff
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(a) kite, δ = 1 (b) L-shaped domain, δ = 1

Fig. 6.4: Plots showing the δ-Stekloff eigenvalues for multiple values of σ for the kite
(left) and the L-shaped domain (right) with δ = 1 and both n = 4 (blue circles)
and n = 4.1 (red × symbols). The y-axis represents the value of σ, and the x-axis
represents the δ-Stekloff eigenvalues corresponding to each value of σ. Horizontal
black lines mark the values of σ considered.

(a) kite, δ = 1 (b) L-shaped domain, δ = 1

Fig. 6.5: Plots showing the detection of the most sensitive eigenvalue from far field
data for the kite (left) and the L-shaped domain (right) with n = 4 and δ = 1. The
eigenvalues computed by the finite element method are shown as red markers for
comparison.

eigenvalues exist when δ is above a certain threshold depending on the dimension.
Second, through a series of numerical examples we observed that with δ > 0 and the
introduction of a suitable amplification parameter σ the δ-Stekloff eigenvalues display
a significantly greater response to changes in the refractive index of an inhomogeneous
medium than that observed for the standard Stekloff eigenvalues.

We note that the operator Sδ,σ essentially modulates the Fourier coefficients of a
certain term in the boundary condition of the new auxiliary problem. Interestingly,
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we achieved the first result by reducing the magnitudes of the Fourier coefficients in
a suitably rapid manner at the tail of the sequence, i.e. for all but finitely many
coefficients, and we achieved the second result by increasing the magnitude of the
first Fourier coefficient. We have mentioned that other auxiliary scattering problems
have been introduced which include a parameter γ that may be tuned to increase the
sensitivity of the eigenvalues (cf. [3, 10, 12, 13]), but the effect of tuning δ and σ in
the present problem is much more straightforward.

As we indicated in the introduction, this idea is not restricted to the Stekloff
eigenvalue problem for an inhomogeneous medium. The most straightforward gener-
alization is to scattering by an anisotropic medium, in which the main equation in
the physical scattering problem in D is replaced by

∇ ·A∇w + k2nw = 0 in D,

where A is a d × d matrix-valued function with certain restrictions (cf. [3]). Many
of the results we have established would still hold in this case, but some differences
would arise due to the regularity results we used.

The entirety of our discussion has been devoted to a particular example of a tai-
lored eigenvalue method in which we designed the eigenvalue problem to guarantee
existence and sensitivity of the eigenvalues, but it is by no means the only choice.
It may be possible to design auxiliary problems which provide improved results for
specific materials or types of scattering, and this idea is an avenue of future research.
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