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Abstract—We introduce a new eigenvalue problem arising from
electromagnetic scattering which may potentially be used as a
target signature in nondestructive testing of materials. After
establishing some basic properties of this eigenvalue problem,
we show that the eigenvalues may be determined from measured
scattering data.

Index Terms—inverse scattering, nondestructive testing, eigen-
value problems

I. INTRODUCTION

A recent subject of interest has been the mathematical study
of eigenvalue problems arising in scattering theory and their
potential use as a target signature in nondestructive testing of
materials. The main objective of nondestructive testing is to
detect flaws or other changes in a material without inflicting
damage upon it, and in the present context we aim to do so by
interrogating the medium with electromagnetic radiation and
measuring the resulting scattered field. In principle, one should
be able to determine the constitutive parameters of the material
from this data and directly observe any flaws. However, for
anisotropic materials, in which the constitutive parameters of
the material depend on the direction of measurement, it is
known that multiple configurations of these parameters may
yield the same measured scattering data [1].

Thus, we restrict ourselves to detecting changes in the mate-
rial relative to some known reference configuration. We note
that methods exist to determine the support of the medium,
such as the linear sampling method [2], and consequently we
only seek to detect changes in the constitutive parameters of
the material. Our main tool is an eigenvalue problem that
we will introduce shortly, in which the eigenvalue serves as
a target signature. In order to detect a change in a tested
material, we compute the eigenvalues and compare them to
the known eigenvalues for the reference material, and we infer
changes from significant shifts in these values.

The layout of our discussion is as follows. We will begin
in Section II by introducing the scattering problem and the
eigenvalue problem of interest, after which we state some

This material is based upon work supported by the Army Research Office
through the National Defense Science and Engineering Graduate (NDSEG)
Fellowship, 32 CFR 168a, and by the Air Force Office of Scientific Research
under award number FA9550-17-1-0147.

important mathematical properties of the eigenvalues. In Sec-
tion III we provide the result that allows eigenvalues to be
computed from measured scattering data, and we provide an
example that shows the practical application of the eigenvalues
that we outlined above.

II. THE MODIFIED TRANSMISSION EIGENVALUE PROBLEM

We consider scattering of a time-harmonic incident elec-
tromagnetic field (Ei,Hi) by an inhomogeneous medium
with relative electric permittivity ε and relative magnetic
permeability µ, which may be modeled in terms of the electric
field as the problem of seeking a total field E and a scattered
field Es satisfying

∇× µ−1∇×E− k2εE = 0 in D, (1a)

∇×∇×Es − k2Es = 0 in R3 \D, (1b)

ν ×E− ν ×Es = ν ×Ei on ∂D, (1c)

ν × µ−1∇×E− ν ×∇×Es = ν ×∇×Ei on ∂D, (1d)
lim
r→∞

(∇×Es × x− ikrEs) = 0. (1e)

The domain D represents the support of the medium, which
implies that ε = 1 and µ = 1 outside of D, and we assume
that D is a Lipschitz domain with boundary ∂D and outward
unit normal vector ν and that R3 \D is connected. The wave
number k is given by k =

√
ε0µ0ω, where (ε0, µ0) are the

material parameters for the homogeneous background material
and ω is the frequency of the incident field. The Silver-Müller
radiation condition (1e) is assumed to hold uniformly in all
directions, and it follows that the scattered field Es has the
asymptotic expansion

Es(x) =
eikr

r
E∞(x̂) +O

(
1

r2

)
as r = |x| → ∞, (2)

where E∞ is the far field pattern. Our data consists of mea-
surements of this far field pattern resulting from choosing Ei

as a plane wave incident field with various incident directions
d ∈ R3, |d| = 1, and polarizations p ∈ R3, p 6= 0, which we
denote as E∞(x̂,d;p).

In order to generate an eigenvalue problem, we compare
this measured scattering data to the computed scattering data
for an auxiliary problem. In the present work we consider the



problem of finding a total field E0, a scattered field Es0, and
a scalar field P with

∫
B
P dx = 0 satisfying

∇× γ−1∇×E0 − k2ηE0 + k2∇P = 0 in B, (3a)

∇×∇×Es0 − k2Es0 = 0 in R3 \B, (3b)
∇ ·E0 = 0 in B, (3c)
ν ·E0 = 0 on ∂B, (3d)

ν ×E0 − ν ×Es0 = ν ×Ei on ∂B, (3e)

ν × γ−1∇×E0 − ν ×∇×Es0 = ν ×∇×Ei on ∂B,
(3f)

lim
r→∞

(∇×Es0 × x− ikrEs0) = 0, (3g)

where B is chosen such that D ⊆ B, γ 6= 1 is a fixed
parameter, and η is a complex number that will serve as
the eigenparameter. By comparing the measured scattering
data E(x̂,d;p) to the auxiliary far field data E0,∞(x̂,d;p)
resulting from (3a)–(3g) for various plane wave incident fields,
we generate the eigenvalue problem of finding a complex
number η and nontrivial vector fields w and v and scalar
field p with

∫
B
p dx = 0 satisfying

∇× µ−1∇×w − k2εw = 0 in B, (4a)

∇× γ−1∇× v − k2ηv + k2∇p = 0 in B, (4b)
∇ · v = 0 in B, (4c)
ν · v = 0 on ∂B, (4d)

ν × (w − v) = 0 on ∂B, (4e)

ν ×
(
µ−1∇×w − γ−1∇× v

)
= 0 on ∂B. (4f)

We call a value of η for which a nontrivial solution (w,v, p)
of (4a)–(4f) exists a modified transmission eigenvalue, and in
the following theorem we summarize some basic properties of
these eigenvalues [3].

Theorem 1. If γ 6= 1, then the set of modified transmission
eigenvalues is discrete without finite accumulation point. If µ
and ε are real-valued, then all of the eigenvalues are real and
infinitely many exist.

III. DETECTION OF EIGENVALUES

For practical applications, it is necessary that modified
transmission eigenvalues can be computed from measured
scattering data E∞ and computed auxiliary data E0,∞. We
first define the modified far field operator F as the integral
operator

(Fg)(x̂) :=

∫
S2
[E∞(x̂,d;g(d))−E0,∞(x̂,d;g(d))] ds(d),

(5)
where g is a function defined on the unit sphere S2. With the
far field pattern of an electric dipole with polarization q given
by

Ee,∞(x̂, z;q) :=
ik

4π
(x̂× q)× x̂e−ikx̂·z, x̂ ∈ S2, (6)

and the Herglotz wave function defined by

vig(x) := ik

∫
S2
e−ikx·dg(d) ds(d), x ∈ R3, (7)

we state the following results which allow for the detection of
eigenvalues from measured scattering data through the linear
sampling method [3].

Theorem 2. (i) Let z ∈ B. If η is not a modified trans-
mission eigenvalue, then for every δ > 0 there exists gδz
satisfying

lim
δ→0
‖Fgδz −Ee,∞(x̂, z;q)‖L2

t (S2) = 0 (8)

such that the sequence {‖vigδz‖H(curl,B)}δ>0 is bounded.
(ii) If η is a modified transmission eigenvalue and

the sequence {gδz} satisfies (8), then the sequence
{‖vigδz‖H(curl,B)}δ>0 cannot be bounded for almost every
z ∈ Bρ, where Bρ ⊂ B is an arbitrary ball of radius
ρ > 0.

We may use Theorem 2 to compute eigenvalues in the
following manner. For various values of η in a region con-
taining an eigenvalue , we compute the auxiliary far field data
E0,∞(x̂,d;p) and construct an approximate solution g = gz,η

to a regularized version of the modified far field equation
Fg = Ee,∞(·, z;q). We search for eigenvalues as peaks in
the graph of the map η 7→ ‖gz,η‖L2

t (S2)
. We refer to [4] for

the same approach used to compute electromagnetic Stekloff
eigenvalues from far field data.

Fig. 1. A shift in an eigenvalue due to an overall change in a constant electric
permittivity with µ = 1. The simulated electric far field data corresponds to
the unit sphere with k = 2 and 2% noise.
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