2.2. Algebraic Computation of Limits $\ln 2.1$; we leaned about finding limits numerically and graphically; In 2.2; we will learn about finding limits algebraically (relying on the direct substitution method first, if it doern't work; we will we factoring, trig. identities, rationalizing.
"Dinect 8ubstitution Property" \rightarrow DSP If $\lim _{x \rightarrow c} f(x)=f(c)$; the f has the DSP $x \rightarrow c \quad$ at $x=c\left(\begin{array}{lll}\text { as } & 10 & \text { as } \\ c & \sqrt{3} & \text { the } \\ \text { dosinin of } f(x)\end{array}\right)$

$$
\begin{aligned}
& \text { E.g: } \lim _{x \rightarrow 2} f(x)= \lim _{x \rightarrow 2}\left(2 x^{5}-9 x^{3}+3 x^{2}-11\right)=? \\
& \text { Solutim:i: } \\
& \text { IDSP: }=2 \cdot 2^{5}-9 \cdot 2^{3}+3 \cdot 2^{2}-11 \\
& 2 \cdot 32-9 \cdot 8+3 \cdot 4-11 \\
& \underline{64-72+12-11}=-8+1=-7
\end{aligned}
$$

E.g. Compute $\lim _{z \rightarrow-1} \frac{z^{3}-3 z+7}{5 z^{2}+9 z+6}$

Solution: check if -1 is in do ain of the rational function.

$$
5 z^{2}+9 z+6 ; z=-1 \Rightarrow 5(-1)^{2}+9(-1)+6
$$

lin notation is important
Use DSP for the numerator:

$$
\lim _{z \rightarrow-1} \frac{z^{3}-3 z+7}{5 z^{2}+9 z+6}=\frac{(-1)^{3}-3(-1)+7}{2}=\frac{-1+3+7}{2}=\frac{9}{2}
$$

Exp) Power (or Root) Function
Compute $\lim _{x \rightarrow-2} f(x)=\lim _{x \rightarrow-2} \sqrt[3]{x^{2}-3 x-2}$
Solution: DSP: $\lim _{x \rightarrow-2} \sqrt[3]{x^{2}-3 x-2}=\sqrt[3]{(-2)^{2}-3(-2)-2}$ $=\sqrt[3]{4^{+6-2}}=\sqrt[3]{8}=2$
graph of $y=\sin x$
Expo Trip, Function
a) $\lim _{x \rightarrow 0}(\sin x)^{2}=\left[\lim _{x \rightarrow 0} \sin x\right]^{-1}=0^{2}=0$

Exp)Compute $\lim _{x \rightarrow 0}(1-\cos x)$
Solution: "DSP"

$$
\lim _{x \rightarrow 0}(1-\cos x)=1-\cos 0=1-1=0
$$

$$
\begin{aligned}
& \text { Exp) Compute } \\
& \begin{array}{ll}
\lim _{x \rightarrow 1}\left(x^{2} \cdot \cos \pi x\right) . & \left.\frac{\text { Solvtion: }}{\left(\lim _{x \rightarrow 1} x^{2}\right.}\right) \cdot\left(\lim _{x \rightarrow 1} \cos \pi x\right) \\
& \text { "DSP } P^{4} \\
= & 1^{2} \cdot \cos (\pi \cdot 1)=1 \cdot \cos \pi=-1
\end{array}
\end{aligned}
$$

What to os when division by 0 after OSP?

$$
\text { E.g: } \lim _{x \rightarrow 2} f(x)=\lim _{x \rightarrow 2} \frac{x^{2}+x-6}{x-2}=7 \frac{\operatorname{tgy}^{\prime \prime} 0}{-0 . p^{\prime \prime}} \frac{2^{2}+2-6}{2-2}=\frac{0 " "}{0}
$$

Try factoring.

$$
\begin{aligned}
\lim _{x \rightarrow 2} \frac{(x-2)(x+3)}{x+}= & \lim _{x \rightarrow 2}(x+3) \quad[x \neq 2] \\
& \cdot \text {.DAP " } \\
= & 2+3=5
\end{aligned}
$$

$$
\begin{array}{ll}
\text { E.g: } \lim _{x \rightarrow 4} \frac{\sqrt{x}-2}{x-4}=? & \begin{array}{ll}
\frac{\sqrt{4}-2}{4-4}=\frac{0}{0} \\
& \\
\lim _{x \rightarrow 4} \frac{\sqrt{x}-2}{x-4} \cdot \frac{\sqrt{x}+2}{\sqrt{x}+2} & a^{2}-b^{2}=(a-b)(a+b) \\
(\sqrt{x})^{2}-22^{2}=(\sqrt{x}-2) \cdot(\sqrt{x}+2)
\end{array} \\
=\lim _{x \rightarrow 4} \frac{x-41}{} \quad(\sqrt{x}-2) \cdot(\sqrt{x}+2)=(\sqrt{x})^{2}-2^{2} \\
=x-4) \cdot(\sqrt{x}+2) & =x-4 \\
=\lim _{x \rightarrow 4} \frac{1}{\sqrt{x}+2}=\frac{1}{\sqrt{4}+2}=\frac{1}{2+2}=\frac{1}{4}
\end{array}
$$

Limits of Preewise-Defined Functions Compute $\lim _{x \rightarrow 0} f(x)$ where $f(x)= \begin{cases}x+1, & \text { if } x>0 \\ x^{2}+1, & \text { if } x<0\end{cases}$
Solution:

$$
\lim _{x \rightarrow 0} f(x)=1
$$

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}}\left(x^{2}+1\right)=1 \\
& \lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}}(x+1)=1 \\
& \lim _{x \rightarrow 0^{+}}(x+1)=\lim _{x \rightarrow 0^{-}}\left(x^{2}+1\right)=1
\end{aligned}
$$

$$
\begin{aligned}
& \text { Ansuer: } \lim _{x \rightarrow 0} g(h) \text { DNE } \\
& \text { fom ere piece. } \\
& \text { to the atorpine } \\
& \lim _{x \rightarrow 0^{-}} g(x) \neq \lim _{x \rightarrow 0^{+}} g(x)
\end{aligned}
$$

Special Trig. Linis to Menorize

$$
\begin{aligned}
& \lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1 ; \lim _{x \rightarrow 0} \frac{\sin x}{x}=1 \\
& \lim _{\theta \rightarrow 0} \frac{\theta}{\sin \theta}=1
\end{aligned}
$$

Exa

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{\sin 3 x}{5 x}=? \\
& \lim _{x \rightarrow 0} \frac{\sin 3 x}{5 x} \cdot \frac{3 x}{3 x}=\lim _{x \rightarrow 0} \frac{\sin 3 x}{3 x} \cdot \frac{3 y}{5 x} \\
& =\lim _{x \rightarrow n} \frac{3}{5}=\frac{3}{5}
\end{aligned}
$$

Exp) Calculate $\lim _{x \rightarrow 0} \frac{\operatorname{Tan}(8 x)}{\operatorname{Sin}(3 x)} \cdot \operatorname{Tan} \theta=\frac{\sin \theta}{\operatorname{Cos} \theta}$

$$
\begin{aligned}
& \text { Solution. } \lim _{x \rightarrow 0} \frac{\frac{x \rightarrow 0}{\sin (8 x)} \cos (8 x)}{\frac{\sin (3 x)}{1}}=\lim _{x \rightarrow 0} \frac{\sin (8 x)}{\cos (8 x)} \cdot \frac{1}{\operatorname{Sin}(3 x)} \\
& =\lim _{x \rightarrow 0} \frac{\sin (8 x)}{\operatorname{Cos}(8 x)} \cdot \frac{8 x}{8 x} \cdot \frac{1}{\sin (3 x)} \cdot \frac{3 x}{3 x} \\
& =\lim _{x \rightarrow 0} \frac{\sin (8 x)}{8 x} \cdot \frac{8 x}{\cos (8 x)} \cdot \frac{3 x}{\sin 3 x} \cdot \frac{1}{3 x} \\
& =\lim _{x \rightarrow 0} \frac{8 x}{\cos (8 x) \cdot 3 x}=\lim _{x \rightarrow 0} \frac{8}{3 \cdot \cos (8 x)}=\frac{8}{3 \cdot \cos 0}=\frac{8}{3}
\end{aligned}
$$

E.g: Compute $\lim _{x \rightarrow 1}\left(\frac{\frac{1}{x}-1}{x-1}\right)$

Solution: try"DSP" $\Rightarrow \frac{" 0}{}{ }^{0}$

$$
\begin{aligned}
& \lim _{x \rightarrow 1}\left(\frac{\frac{1}{x}-\frac{1}{1}(x)}{x-1}\right)=\lim _{x \rightarrow 1}\left(\frac{\frac{1-x}{x}}{\frac{x-1}{1}}\right)=\underbrace{x \rightarrow 1}_{1-x=-(x-1)}\left(\frac{1-x}{x} \cdot \frac{1}{x-1}\right) \\
& =\lim _{x \rightarrow 1}\left(\frac{-1}{x}\right) \stackrel{\text { "DsP" }}{=} \frac{-1}{1}=-1
\end{aligned}
$$

Find in the Limits of Absolute Value functions Exp) compute $\lim _{x \rightarrow 6} \frac{|x-6|}{x-6}$
Solution:

$$
\xrightarrow[x-6]{ }
$$

$$
|x|= \begin{cases}-x, & \text { if } x<0 \\ x, & \text { if } x \geqslant 0\end{cases}
$$

$x=6$ is a transition P for $\frac{|x-6|}{x-6}$

$$
\begin{aligned}
& \lim _{x \rightarrow 6^{-}} \frac{-(x-6)}{x-6}=\lim _{x \rightarrow 6^{-}}-1=-1| |_{x \rightarrow 6^{+}}^{R L} \frac{(x-6)^{x-6}}{x-6}=\lim _{x \rightarrow 6^{+}} 1=1 \\
& \quad L L \neq R L(-1 \neq 1) \text { therefore: } \lim _{x \rightarrow 6} \frac{|x-|^{x}}{x-6} \text { ONE }
\end{aligned}
$$

Exp) Compute $\lim _{x \rightarrow 0} \frac{(x+3)^{2}-9}{x}$
Solution:

$$
\begin{aligned}
& \operatorname{try} \text { "O.S.p" } \frac{(0+3)^{2}-9}{0}=\frac{9-9}{0}=\frac{" 0}{0} \\
& \lim _{x \rightarrow 0} \frac{(x+3)^{2}-3^{2}}{x}=\lim _{x \rightarrow 0} \frac{(x+3-3)(x+3+3)}{x} \\
& \lim _{x \rightarrow 0} \frac{x \cdot(x+6)}{x}=\lim _{x \rightarrow 0} x+6=0+6=6 \\
& 0 \lim _{x \rightarrow 0} \frac{x^{2}+6 x+9-9}{x}=\lim _{x \rightarrow 0} \frac{x(x+6)}{x}=6
\end{aligned}
$$

