3.5. Chain Rule

In 3.2-3.3; we calculated the derivatives of $\ln x, \operatorname{Sin} x, x^{2}-3$.
How to we differentiate functions:

$$
\ln (x-2), \sin (\cos x),\left(x^{2}-3\right)^{2}
$$

Theorem, if $f$ and $g$ are differentiable the the derivative $f(g(x))$ is:

$$
\frac{d}{d x}[f(g(x))]=f^{\prime}(g(x)) \cdot g^{\prime}(x)
$$

Exp) Differentiate $y=\left(3 x^{4}-7 x+5\right)^{3}$

$$
\begin{array}{lc}
y=(g(x))^{3} & g(x) \\
f(x) \\
f(x)=(g(x))^{3} & f^{\prime}(g(x)) \cdot g^{\prime}(x)= \\
g(x)=3 x^{4}-7 x+5 & 3 \cdot g(x)^{2} \cdot\left(3 x^{4}-7 x+5\right)^{\prime} \\
& =3\left(3 x^{4}-7 x+5\right)^{2} \cdot\left(3 \cdot 4 \cdot x^{3}-7\right)
\end{array}
$$

Exp) $y=\sin \left(x^{2}\right)$
Solution: $f(x)=\operatorname{Sin}(g(x))$

$$
\begin{aligned}
g(x) & =x^{2} \\
f^{\prime}(g(x)) \cdot g^{\prime}(x) & =\left(\sin (g(x))^{\prime} \cdot\left(x^{2}\right)^{\prime}\right. \\
& =\cos (g(x)) \cdot 2 x \\
& =\cos \left(x^{2}\right) \cdot 2 x \\
& =2 x \cdot \cos \left(x^{2}\right)
\end{aligned}
$$

Exp)Differetiate

$$
h(x)=\sqrt[4]{\frac{x}{1-3 x}}=\left(\frac{x}{1-3 x}\right)^{\frac{1}{4}}
$$

$$
\begin{aligned}
& \text { Solutian: } \begin{aligned}
f(x) & =[g(x)]^{\frac{1}{4}} \quad\left(\frac{f}{g}\right)^{\prime}=\frac{f^{\prime} g-f \cdot g}{g^{2}} \\
g(x) & =\frac{x}{1-3 x} \\
f^{\prime}(g(x)) \cdot & g^{\prime}(x)=\frac{1}{4}[g(x)]^{\frac{-3}{4}} \cdot\left(\frac{x}{1-3 x}\right)^{\prime} \\
& =\frac{1}{4}[\underbrace{\left.\frac{x^{2}}{1-3 x}\right]^{-3 / 4}} \cdot\left(\frac{1 \cdot(1-3 x)-x(-3)}{(1-3 x)^{2}}\right) \\
& =\frac{1}{4} \frac{(x)^{-3 / 4}}{(1-3 x)^{-3 / 4}} \cdot\left(\frac{1-3 x+3 x}{(1-3 x)^{2}}\right) \\
& =\frac{1}{4} \cdot \frac{x^{-3 / 4}}{(1-3 x)^{-3 / 4+2}} \\
& =\frac{x^{-3 / 4}}{4(1-3 x)^{5 / 4}} \quad \frac{-3}{4}+\frac{2}{1(4)} \\
& =\frac{1}{4 \cdot x^{3 / 4} \cdot(1-3 x)^{5 / 4}} \quad \frac{-3}{4}+\frac{8}{4}=\frac{5}{4}
\end{aligned}
\end{aligned}
$$

Exp)Differentiate

$$
\begin{aligned}
& \text { Exp)DTfere trate } \\
& g(x)=\cos \left(x^{2}\right)+5\left(\frac{3}{x}+4\right)^{6} \\
& \cos \left(x^{2}\right) \rightarrow g(x)=x^{2}, f(x)=\cos (g(x)) \\
& f^{\prime}(g(x)) \cdot g^{\prime}(x)=(\cos (g(x)))^{\prime} \cdot\left(x^{2}\right)^{\prime} \\
&=-\sin (g(x)) \cdot 2 x \\
&=-2 x \cdot \sin \left(x^{2}\right) \\
& 5\left(\frac{3}{x}+4\right)^{6} \rightarrow g(x)=\frac{3}{x}+4, f(x)=5(g(x))^{6} \\
& f^{\prime}(g(x)) g^{\prime}(x)=5 \cdot 6 \cdot g(x)^{5} \cdot\left(\frac{3}{x}+4\right)^{\prime} \\
&=30 \cdot\left(\frac{3}{x}+4\right)^{5} \cdot\left(3 \cdot x^{-1}+4\right)^{\prime} \\
&=30\left(\frac{3}{x}+4\right)^{5} \cdot\left(3 \cdot(-1) \cdot x^{-2}\right) \\
&=-90\left(\frac{3}{x}+4\right)^{5} \cdot x^{-2}
\end{aligned}
$$

Exp) Differentiate $p(x)=\frac{\tan 7 x}{(1-4 x)^{5}}$ use quotient rule: $\left(\frac{f}{g}\right)^{\prime}=\frac{f^{\prime} \cdot g-f \cdot g^{\prime}}{g^{2}}$

$$
\begin{aligned}
p^{\prime}(x) & =\frac{(\tan 7 x)^{\prime} \cdot(1-4 x)^{5}-(\tan 7 x) \cdot\left[(1-4 x)^{5}\right]}{\left(x^{m}\right)^{n}} \\
= & =x^{m \cdot n} \\
& =\frac{\left.\sec ^{2}(7 x) \cdot 7(1-4 x)^{5}\right)^{5}-\tan 7 x\left[5(1-4 x)^{2} \cdot(-4)\right]}{(1-4 x)^{10}} \\
& =\frac{7 \cdot \sec ^{2}(7 x) \cdot(1-4 x)^{5}+20 \cdot \tan (7 x) \cdot(1-4 x)^{4}}{(1-4 x)^{10}} \\
& =\frac{(1-4 x)^{4}\left[7 \cdot \sec ^{2}(7 x) \cdot(1-4 x)+20 \cdot \tan (7 x)\right]}{(1-4 x)^{10}(1-4 x)^{6}} \\
& =\frac{7 \cdot \sec ^{2}(7 x)}{(1-4 x)^{5}}+\frac{20 \cdot \tan (7 x)}{(1-4 x)^{6}}
\end{aligned}
$$

Exp) Differetiate $y=e^{-3 x}$. Sinx

$$
\begin{aligned}
& (f \cdot \rho)^{\prime}=f^{\prime} \cdot g+f \cdot g^{\prime} \\
& y^{\prime}=\left(e^{-3 x}\right)^{\prime} \cdot \sin x+\frac{\left(e^{-3 x}\right) \cdot(\sin x)^{\prime}}{\left[e^{g(x)}\right]^{\prime}=\left(e^{\left.g^{(x)}\right)^{\prime}} \cdot(g(x))^{\prime}\right.} \\
& =e^{-3 x} \cdot(-3 x)^{\prime} \cdot \sin x+\quad e^{-3 x} \cdot \cos x \\
& \left.=-3 \cdot e^{-3 x} \cdot \sin x+e^{-3 x} \cdot \cos x e^{x}\right]^{\prime}=e^{x} \cdot 1 \\
& =e^{-3 x}(-3 \sin x+\cos x)
\end{aligned}
$$

Exp)Differatiate $y=\ln \left(x^{3}+x\right)$

$$
\begin{aligned}
& (\ln x)^{\prime}=\frac{1}{x} \quad ; \quad\left(\ln (g(x))^{\prime}=\frac{g^{\prime}(x)}{g(x)}\right. \\
& (\ln x)^{\prime}=\frac{x^{\prime}}{x}=\frac{1}{x} \\
& y=\ln (g(x)) \quad y^{\prime}=\frac{\left(x^{3}+x\right)^{\prime}}{x^{3}+x}=\frac{3 x^{2}+1}{x^{3}+x} \\
& g(x)=x^{3}+x
\end{aligned}
$$

Exp) Differtiate $y=\operatorname{Sin}\left(e^{x}\right) \cdot \operatorname{Cos} x$
Product rule: $(f \cdot g)^{\prime}=f^{\prime} g+f g^{\prime}$

$$
\begin{aligned}
y^{\prime} & =\left(\sin \left(e^{x}\right)\right)^{\prime} \cdot \cos x+\left(\sin \left(e^{x}\right)\right) \cdot(\cos x)^{\prime} \\
& =\cos \left(e^{x}\right) \cdot e^{x} \cdot \cos x+\sin \left(e^{x}\right) \cdot(-\sin x)
\end{aligned}
$$

Exp) Differentiate $y=\sqrt{\frac{x^{3}}{1-x}}=\left(\frac{x^{3}}{1-x}\right)^{\frac{1}{2}}$
Power rile, quotiat rode, chan rule $\sqrt[3]{x}=x^{\frac{1}{3}}$

$$
\begin{aligned}
y^{\prime} & \left.=\frac{\frac{1}{2}\left(\frac{x^{3}}{1-x}\right)^{\frac{-1}{2}}}{\text { outside }} \cdot \frac{\left[x^{3}\right.}{1-x}\right]^{\prime} \\
& =\frac{1}{2}\left(\frac{x^{3}}{1-x}\right)^{\frac{-1}{2}} \cdot\left[\frac{3 x^{2}(1-x)-x^{3}(1-x)^{\prime}}{(1-x)^{2}}\right] \\
& =\frac{1}{2}=x^{\frac{1}{2}}\left(\frac{x^{3}}{1-x}\right)^{\frac{-1}{2}} \cdot\left[\frac{3 x^{2}-3 x^{3}-x^{3} \cdot(-1)}{(1-x)^{2}}\right] \\
& =\frac{1}{2} \frac{x^{-3 / 2}}{(1-x)^{-\frac{1}{2}}} \cdot\left[\frac{3 x^{2}-2 x^{3}}{(1-x)^{2}}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{2} \frac{x^{-3 / 2}}{(1-x)^{-\frac{1}{2}}} \cdot\left[\frac{3 x^{2}-2 x^{3}}{(1-x)^{2}}\right] \\
= & \frac{1}{2} \cdot \frac{x^{-3 / 2} \cdot x^{2}(3-2 x)}{(1-x)^{-\frac{1}{2}+2}} x^{-\frac{3}{2}+2}=x^{\frac{1}{2}} \\
= & \frac{1}{2} \cdot \frac{x^{\frac{1}{2}}(1-x)^{3 / 2}}{(1-x)^{3 / 2}}
\end{aligned}
$$

Exp) Find the $x$-coordinate of each point on the graph of $f(x)=x^{2} \cdot(4 x+5)^{3}$ where the taget line is horizatal.
Solution:
$f^{\prime}(x)=0$ soke it for $x$.

$$
\begin{aligned}
& f^{\prime}(x)=\left(x^{2}\right)^{\prime}(4 x+5)^{3}+x^{2} \cdot\left[(4 x+5)^{3}\right]_{(4 x+5)^{\prime}}^{\prime} \\
&\left.=2 x(4 x+5)^{3}+x^{2} \cdot 3(4 x+5)^{2} \cdot 4\right] \\
&=2 x(4 x+5)^{2}\left[(4 x+5)^{\prime}+x \cdot 3 \cdot 2\right] \\
&=2 x(4 x+5)^{2}(10 x+5) \\
& f^{\prime}(x)=0=\underbrace{2 x \cdot}_{0} \underbrace{(4 x+5)^{2}}_{0} \cdot \underbrace{(10 x+5)}_{0} \\
& 2 x=0 \Rightarrow x=0 \\
&(4 x+5)^{2}=0 \Rightarrow 4 x+5=0 \Rightarrow 4 x=-5 \Rightarrow x=\frac{-5}{4} \\
&(10 x+5)=0 \Rightarrow 10 x=-5 \Rightarrow x=\frac{-5}{10}=\frac{-1}{2}
\end{aligned}
$$

Exp) Find the $x$-coordinate of each point on the graph of $V(x)=\frac{\ln \sqrt{x}}{x^{2}}$ where the tangent line is horizontal. Solution: hariatal taget means

$$
\begin{aligned}
& V^{\prime}(x)=0 \\
& \begin{aligned}
V^{\prime}(x) & =\frac{(\ln \sqrt{x})^{\prime} \cdot\left(x^{2}\right)-(\ln \sqrt{x}) \cdot\left(x^{2}\right)^{\prime}}{\left(x^{2}\right)^{2}} \\
& =\frac{\frac{1}{2} \cdot x^{-1} \cdot\left(x^{2}\right)-\ln (\sqrt{x}) \cdot 2 x}{\sqrt{x}}=\frac{\left(x^{\frac{1}{2}}\right)^{\prime}}{\sqrt{x}}=\frac{\frac{1}{2} \cdot x^{-\frac{1}{2}}}{x^{\frac{1}{2}}}=\frac{1}{2} x^{-1} \\
& =\frac{\frac{1}{2} \cdot x-\ln \sqrt{x} \cdot 2 x}{x^{4}} \\
& =\frac{x\left(\frac{1}{2}-2 \cdot \ln \sqrt{x}\right)}{x^{4}-x^{3}}
\end{aligned}
\end{aligned}
$$

$$
V^{\prime}(x)=0=\frac{\frac{1}{2}-2 \cdot \ln \sqrt{x}}{x^{3}}
$$

Inllg porjety
cross multiply:

$$
\left.\begin{array}{rl}
0 \cdot x^{3} & =\frac{1}{2}-2 \cdot \ln \sqrt{x} \quad \begin{array}{rl}
\ln \sqrt{x} & =\ln \left(x^{\frac{1}{2}}\right) \\
& =\frac{1}{2} \cdot \ln x
\end{array} \\
0 & =\frac{1}{2}-2 \cdot \ln x^{\frac{1}{2}} \\
0 & =\frac{1}{2}-2 \cdot \frac{1}{2} \cdot \ln x \\
0 & =\frac{1}{2}-\ln x \\
+\frac{1}{2} & =+\ln x \\
\frac{1}{2} & =\ln x \\
e^{\frac{1}{2}} & =x
\end{array} \quad \operatorname{lin}_{e}^{x}=\frac{1}{2} \Rightarrow x=e^{\frac{1}{2}}\right)
$$

Exp) B type $Q$ from text
Differentiate $g(t)=t^{2} \cdot e^{-t}+(1 n t)^{2}$

$$
\begin{align*}
& g^{\prime}(t)=2 t \cdot e^{-t}+t^{2}\left(e^{-t}\right)^{\prime}+2 \cdot \ln t \cdot(\ln t)^{\prime} \\
& \left.=2 t \cdot e^{-t}+t^{2}\left(e^{-t}\right) \cdot(-t)^{\prime}+2 \cdot \ln t \cdot \frac{1}{t}\right) \\
& {\left[e^{f(x)}\right]^{\prime}=e^{f(x)} \cdot f^{\prime}(x) \quad(\ln t)^{\prime}=\frac{t^{\prime}}{t}=\frac{1}{t}} \\
& =2 t \cdot e^{-t}+t^{2}\left(e^{-t}\right) \cdot(-1)+\frac{2}{t} \cdot \ln t \\
& =t \cdot e^{-t}(2-t)+\frac{2}{t} \cdot \ln t \quad \operatorname{lat} \tag{}
\end{align*}
$$

