Learning Objectives:

(Review) graphs of exp/log functions, simplifying expressions with exp/log, solving equations with \exp / \log, exponential growth and decay, special values of trig functions, solving basic equations with trig, setting up optimization problems

On the final exam, students must know all of the following formulas and special values, and similar kinds of formulas and special values (for instance, the total surface area of a rectangular box with an open top). If necessary, the formula for the volume or the surface area of a sphere, or the volume or the surface area of a cylinder, would be supplied.

- the exact values of the 6 trigonometric functions at the standard special angles
- standard values of logarithmic and exponential functions:
e.g., $\ln (1)$ and $3^{\wedge} 0$
- quadratic formula
- Pythagorean theorem
(also the 3-4-5, 6-8-10, and 5-12-13 triangles to save time)
- area of a triangle (given base and height)
- area and perimeter of a rectangle (including a square)
- area and circumference of a circle
- volume and total surface area of a rectangular solid (including a cube)

Precalculus II Review
Exponential function: The function f is an exponential function of $f(x)=b^{x}$
where b is a pos contact other than 1, and x is a real number.

eff: Graph of $f(x)=2^{x}$	x	$f(x)$
0	1	
0	1	
1	$\left.2^{2}-2,1\right)$	
-1	$2^{-1}-\frac{1}{2}$	

Page $110 \rightarrow$ basic prop. of expo. fue

$$
\begin{aligned}
& \text { ef: } 2^{x^{2}+3}=16=2^{4} \Rightarrow x^{x^{2}+3}=2^{4} \\
& \left(x^{2}-y^{2}=(x-y) \cdot(x+y)\right) \\
& x^{2}-1=0=\frac{(x-1)(x+1)}{x x=71}
\end{aligned}
$$

E.g:

$$
\begin{aligned}
2^{x} 3^{x+1} & =108 \\
\frac{2^{x} \cdot 3^{x} \cdot 子^{y}}{3}=\frac{108}{3} \Rightarrow 2^{x} \cdot 3^{x} & =36 \\
(2 \cdot 3)^{x} & =36 \\
6^{x} & =36 \Rightarrow(x=2
\end{aligned}
$$

$$
\begin{aligned}
& \text { Eff: }(\sqrt{2})^{x^{2}}=\frac{8^{x}}{4} \Rightarrow\left(2^{1 / 2}\right)^{x^{2}}=\frac{\left(2^{3}\right)^{x}}{2^{2}} \\
& {\left[\sqrt[2]{x}=x^{\frac{1}{2}}\right]} \\
& {\left[\sqrt[3]{x}=x^{\frac{1}{3}}\right]} \\
& \left.2^{\frac{1}{2} \cdot x^{2}}=\frac{2^{3 x}}{2^{2}}\right\} \\
& {\left[\sqrt[3]{x^{2}}=x^{2 / 3}\right]} \\
& 2^{\frac{x^{2}}{2}}=2^{3 x-2} \\
& \text { Quadratic formula: } \\
& \frac{x^{2}}{2}>\frac{3 x-2}{1} \\
& a x^{2}+b x+c=0 \\
& x^{2}=6 x-4 \\
& x^{2}-6 x+4=0 \\
& x_{1,2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& 3+\sqrt{5} \\
& \begin{array}{l}
a=1, b=-6, \quad c=4 \\
x_{1,2}=\frac{6 \pm \sqrt{(-6)^{2}-4 \cdot 1 \cdot 4}}{2 \cdot 1}
\end{array} \\
& 3-\sqrt{5}-\sqrt{3 \pm \sqrt{5}}=\frac{6 \pm 2 \sqrt{5}}{2}=\frac{6 \pm \sqrt{20}}{2}
\end{aligned}
$$

Logarithmic Functions
Def: If $b>0, b \neq 1$; the logarithm of x to the base b is the furtive $y=\log _{5}^{x}$ that satisfies $b^{y}=x \quad\left(b^{y}>0\right.$ (or ally)

Some properties of logaishnic functions
Product Rule $\log _{b}(x: y)=\log _{6} x+\log _{5} y$
Quotient Rule $\log _{b}\left(\frac{x}{y}\right)=\log _{b} x-\log _{b} y$
Power Rule $\log _{6}^{x^{p}}=p \cdot \lg _{6}^{x} \quad \sqrt{\operatorname{Pgge} / 12}$

Evaluate \& simplify

$$
\begin{aligned}
& \text { E.f: } \log _{2}^{\frac{1}{8}}+\log _{2} 128=\log _{2}^{2}+\log _{2} 2^{7} \\
& \left.\frac{1}{8}=\frac{1}{2^{3}}=2^{-3}=-3 \cdot \log _{2} 2^{1}+\log _{2}^{2}=-3+7=-4\right] \\
& 128=2^{7}
\end{aligned}
$$

E.g: Solve the eq. $\lg _{3}(2 x+1)-2 \lg _{3}(x-3)=2$

$$
\begin{aligned}
& {\left[\log x-\log y=\log \left(\frac{x}{y}\right)\right] \quad \log _{3}(2 x+1)-\log _{3}(x-3)^{2}=2} \\
& \log _{3}{ }^{\frac{2 x+1}{(x-3)^{2}}}=2 \rightarrow \frac{3^{2}}{1}=\frac{2 x+1}{(x-3)^{2}} \\
& 9(x-3)^{2}=2 x+1 \Rightarrow 9\left(x^{2}-6 x+9\right)=2 x+1 \\
& 8 x^{2}-54 x+81-2 x-1=0 \\
& \begin{array}{l}
9 x^{2}-56 x+80=0=(9 x-20)(x-4) \\
x=-20,4
\end{array} \\
& \text { rOSA } \\
& x=4 \\
& -36 x-20 x=-56 x v
\end{aligned}
$$

Natural Base e $e \approx 2.71828182845 \ldots$ natural Exprential base, and can be def. by a lint.

$$
e=\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}
$$

"Euler's number" EXP. NOTATION: $\exp (f(x))$ meas $e^{f(x)}$
Comer Logarithm: $\log _{10}^{x}=\log x$
Natural Lgarithmi $\lg _{e} x=\ln x$

Theorem 2.9

1) $\ln _{e} 1=0 \Rightarrow e^{0}=1$
2) $\operatorname{lo}_{e}^{e}=\frac{1}{\pi} \Rightarrow e^{\prime}=e$
3) $e^{\ln x}=x$ for all $x>0$
4) $\ln e^{y}=y$ fer all y
5) $b^{x}=e^{x \cdot 1, b}$ for any $\begin{aligned} & b>0 \\ & b \neq 1\end{aligned}$

Exp. Solve

$$
\begin{aligned}
& \text { Sole : } b^{x}=200 \\
& \ln 6^{x}=\ln 20 \\
& \frac{x \cdot \ln 6}{\ln 6}=\frac{\ln 200}{\ln 6} \\
& x=\frac{\ln 200}{\ln 6}
\end{aligned}
$$

E.j: Sole $\frac{e^{x^{2}}}{e^{x+6}}=1$

$$
\begin{aligned}
& e^{x^{2}(x+6)}=e^{x^{2}-x-6}=1 \\
& e^{x^{2}-x-6}=e^{0} \\
& x^{2}-x-6=0 \Rightarrow(x-3)(x+2)=0 \\
&-3 e^{0}=1 \\
& x=3, x=-2
\end{aligned}
$$

TRIGDNOMETRY REVIEW Special values of tripononetric function Angle (θ) $0 \frac{\pi}{6} \frac{\pi}{4} \frac{5 \pi}{3} \frac{\pi}{2} \pi \frac{3 \pi}{2}$
$\operatorname{Cos} \theta \quad 1 \frac{\sqrt{3}}{2} \frac{\sqrt{2}}{2} \frac{1}{2} 00-10$
$\sin \theta \quad 9 \quad \frac{1}{2} \quad \frac{\sqrt{2}}{2} \quad \frac{\sqrt{3}}{2} 1 \quad 0 \quad-1$
$\frac{\sin \theta}{\cos \theta}=\operatorname{Tan} \theta$
$0 \frac{\sqrt{3}}{3} 1 \sqrt{3}$ undef 9 undefined
$\sec \theta \quad 1 \frac{2 \sqrt{3}}{3} \sqrt{2} 2$ undef. -1 undinied
$\csc \theta$ undef. $2 \sqrt{2} \frac{2 \sqrt{3}}{3} 1$ unde. -1
$\cot \theta$ undf. $\sqrt{3} 1 \frac{\sqrt{3}}{3} 0$ undef. 0
Trig. Identities:

$$
\begin{aligned}
& \operatorname{Sec} \theta=\frac{1}{\cos \theta}, \operatorname{Csc} \theta=\frac{1}{\sin \theta}, \cot \theta=\frac{1}{\tan \theta}, \tan \theta=\frac{\sin \theta}{\cos \theta} \\
& \sin 2 \theta+\cos ^{2} \theta=1
\end{aligned}
$$

Special Right Triggles

Solving Basic Eq. w/ Trig.
Eg: Solve the eq. $3 \sin x-2=5 \sin x-1 ;[0,2 \pi]$

$$
\begin{aligned}
& 3 \sin x-2=5 \sin x-1 \\
& \begin{aligned}
&-3 \sin x-3 \sin x \\
&-2=2 \sin x-1 \\
&+1
\end{aligned} \quad(x, y) \rightarrow(\cos \theta, \sin 4) \\
& \frac{-1}{2}=\sin x
\end{aligned} \quad \Rightarrow \sin x \text { B neg. in QII, QN }
$$

E.g: Solve the eq: $2 \cos ^{2} \theta+\cos \theta-1=0 ;[0,2 \pi]$

$$
2 \cos ^{2} \theta+\cos \theta-1=0
$$

CoDA

$$
2 \cos \theta-\cos \theta=\cos \theta
$$

$$
\begin{gathered}
(2 \cos \theta-1)(\cos \theta+1)=0 \\
\cos \theta=\frac{1}{2} ; \cos \theta=-1 \\
\theta=\frac{\pi}{3}, \frac{5 \pi}{3} ; \theta=\pi
\end{gathered}
$$

Setting up an optimization problem:
Ep: A carpater reeds to build a rectajukar
box by following these specifics:

- width of the box should be half of the length (l)
- height of the box should be three tines the width
a) wite an expression for colure $(V(Q))$
b) Write an expression for surface area ($A(\ell)$)
c) If the sum of the box's height and length is at most 5 units, the what would be the domain of $A(l)$?
formulas
Given

$$
\begin{aligned}
& V=l \cdot w \cdot h \\
& A=2 \cdot(l w+l h+w h)
\end{aligned}
$$

$$
w=\frac{l}{2}, h=3 \cdot w
$$

Dimensites: $l, w=\frac{l}{2}, h=3 w=\frac{3 \cdot l}{2}$
a) $V(l)=l \cdot \frac{l}{2} \cdot \frac{3 l}{2}=\frac{3 l^{3}}{4}$
b)

$$
\text { b) } \begin{aligned}
A(l) & =2\left(l \cdot \frac{l}{2}+l \cdot \frac{3 l}{2}+\frac{l}{2} \cdot \frac{3 l}{2}\right) \\
& =2\left(\frac{l^{2}}{2(2)}+\frac{3 l^{2}}{2(3)}+\frac{3 l^{2}}{4}\right)=2 \cdot \frac{11 l^{2}}{4}=\frac{1 l^{2}}{2} 4 \pi^{2} .
\end{aligned}
$$

c) $h+Q \leqslant 5 u_{i t h}$

$$
\frac{3 l}{2}+l \leq 5 \Rightarrow \frac{5 l}{2} \leq 5 \Rightarrow l \leq 2
$$

since l can not be a negative number, therefore; domain of $t(l)$ is $[0,2]$.

