3.6. Implicit Differentiation

Goal: To differentiate functions that can be implicitly defined when derivative exist.
$f(x)=y=\sqrt{1-x^{2}} \quad y$ is explicitly defined as a function of x

$$
\text { for }-1 \leqslant x \leqslant 1
$$

the same function can abs be implicitly defined as: $y^{2}=\left(\sqrt{1-x^{2}}\right)^{2}$

$$
\begin{aligned}
y^{2} & =1-x^{2} \\
y \text { fuctill of } x \cdot x^{2}+y^{2} & =1
\end{aligned}
$$

a faction of $x \cdot x^{2}+y^{2}=1$ (eq. of a circle which
 how a center at the orjp.y radios of 1)

Procedure for Implicit Differatiation Suppose an equation defines y implicitly as a differentiable function of x.
To find $\frac{d y}{d x}\left(y^{\prime}\right)$
Step 1) Differentiate both sides of the equation $w /$ respect to x. Remember y is really a function of x for part of the curve and se the chain rule when differentiating terms containing y. Step 2) Solve the differentiated equation algebraically for $\frac{d y}{d x}\left(y^{\prime}\right)$

Exp) $y=\sqrt{1-x^{2}}$ explicit f of x
$x^{2}+y^{2}=1$ implicitly defined f of x

$$
\begin{aligned}
y & =\sqrt{1-x^{2}} \\
y^{\prime} & =\left(\sqrt{1-x^{2}}\right)^{\prime} \\
& =\left[\left(1-x^{2}\right)^{\frac{1}{2}}\right]^{\prime} \\
& =\frac{1}{2}\left(1-x^{2}\right)^{-\frac{1}{2}} \cdot(-2 x) \\
& =\frac{-x}{\sqrt{1-x^{2}}}
\end{aligned}
$$

$$
\begin{gathered}
\left(x^{2}+y^{2}\right)^{\prime}=(1)^{\prime} \\
2 x+2 y \cdot y^{\prime}=0 \\
\frac{-2 x}{2 x} \frac{-2 x}{\frac{2 y \cdot y^{\prime}}{2 y}=\frac{-2 x}{2 y}} \\
y^{\prime}=\frac{-x}{y} \\
y^{\prime}=\frac{-x}{\sqrt{1-x^{2}}}
\end{gathered}
$$

We should obtain the same y^{\prime}.

Exp) Find y^{\prime} for $x^{2} \cdot y^{3}-6=5 y^{3}+x$ is the same as: $y=\left(\frac{x+6}{x^{2}-5}\right)^{1 / 3}$ prover $\begin{gathered}\text { pother rick } \\ \text { quin }\end{gathered}$ chan rule
Solution:
Step:

$$
\begin{aligned}
& \text { lotion:: } \quad x^{2} \cdot y^{3}-6=5 y^{3}+x \\
& \quad\left(x^{2} \cdot y^{3}\right)^{\prime}-6^{\prime}=\left(5 y^{3}\right)^{\prime}+(x)^{\prime} \\
& 2 x \cdot y^{3}+x^{2} \cdot\left(y^{3}\right)^{\prime}=15 y^{2} \cdot y^{\prime}+1 \\
& 2 x \cdot y^{3}+x^{2} \cdot 3 y^{2} \cdot y^{\prime}=15 y^{2} \cdot y^{\prime}+1
\end{aligned}
$$

Step 2:

$$
\begin{aligned}
& 3 x^{2} y^{2} \cdot y^{\prime}-15 y^{2} \cdot y^{\prime}=1-2 x \cdot y^{3} \\
& y^{\prime} \cdot\left[3 x^{2} y^{2}-15 y^{2}\right]=1-2 x y^{3} \\
& y^{\prime}=\frac{1-2 x y^{3}}{2 x^{2} y^{2}-15 y^{2}}=\frac{2 x y^{3}-1}{15 y^{2}-3 x^{2} y^{2}}
\end{aligned}
$$

Exp) Find y^{\prime} for $x^{2} y+2 y^{3}=3 x+2 y$

$$
\begin{gathered}
\left(x^{2} \cdot y\right)^{\prime}+\left(2 y^{3}\right)^{\prime}=(3 x)^{\prime}+(2 y)^{\prime}\left(\begin{array}{c}
\text { find } \\
\text { the deviate } \\
\text { w/ repectrin } \\
x
\end{array}\right)
\end{gathered}
$$

$$
\begin{aligned}
& x^{2} \cdot y^{\prime}+6 y^{2} \cdot y^{\prime}-2 \cdot y^{\prime}=3-2 x y \\
& \frac{y^{\prime}\left(x^{2}+6 y^{2}-2\right)}{x^{2}+6 y^{2}-2}=\frac{3-2 x y}{x^{2}+6 y^{2}-2} \\
& y^{\prime}=\frac{3-2 x y}{x^{2}+6 y^{2}-2}
\end{aligned}
$$

Exp) Find the slope of the togent line to the cure $x^{2}+y^{2}=25$ at $P(-3,4)$ Solution:

$$
\begin{aligned}
\left(x^{2}+y^{2}\right)^{\prime} & = \\
2 x+2 y \cdot y^{\prime} & =0 \\
-2 x \quad & -2 x \\
2 y \cdot y^{\prime} & =\frac{-2 x}{2 y} \\
2 y & y^{\prime}=
\end{aligned}
$$

$$
\begin{aligned}
& (+) \text { sloe r } \\
& \left(\begin{array}{c}
(-) \\
\text { slope }
\end{array}\right.
\end{aligned}
$$

$$
\left.y^{\prime}\right|_{(-3,4)}=\frac{-(-1)}{4}=\frac{3}{4}
$$

Exp) What if $x^{2}+y^{2}=-1, \quad y^{\prime}=$?
If we follow the procedure blindly we obtain $y^{\prime}=\frac{-x}{y}$; lever, in the world of real number, there're vales of x \& y that makes $x^{2}+y^{2}=-1$ a valid statement. Derivatrie DNE.

Exp) Find y^{\prime} for: $S_{L}\left(x^{2}+y\right)=y^{2} \cdot(3 x+1)$
Solution: $\left(\sin \left(x^{2}+y\right)\right)^{\prime}=\left(y^{2} \cdot(3 x+1)\right)^{\prime}$

$$
\begin{aligned}
& \cos \left(x^{2}+y\right) \cdot\left(2 x+y^{\prime}\right)=2 y \cdot y^{\prime} \cdot(3 x+1)+y^{2} \cdot 3 \\
& 2 x \cdot \cos \left(x^{2}+y\right)+\cos \left(x^{2}+y\right) \cdot y^{\prime}=2 y \cdot y^{\prime} \cdot 3 x+2 y \cdot y^{\prime}+3 y^{2} \\
& 2 x \cdot \cos \left(x^{2}+y\right)-3 y^{2}=6 x y \cdot y^{\prime}+2 y \cdot y^{\prime}-\cos \left(x^{2}+y\right) \cdot y^{\prime} \\
& \frac{2 x \cdot \cos \left(x^{2}+y\right)-3 y^{2}}{y^{\prime}}=\frac{y^{\prime} \cdot\left(6 x y+2 y-\cos \left(x^{2}+y\right)\right)}{6 x y+2 y-\cos \left(x^{2}+y\right)-3 y^{2}}
\end{aligned}
$$

Exp) Find $y^{\prime \prime}$ when $x^{2}+y^{2}=10$
Solution:

$$
\begin{aligned}
&\left(x^{2}+y^{2}\right)^{\prime}=10^{\prime} \\
& 2 x+2 y \cdot y^{\prime}=0 \\
&-2 x x \\
& \frac{2 y \cdot y^{\prime}}{2 y}=\frac{-2 x}{2 y}
\end{aligned}=y^{\prime}=\frac{-x}{y}
$$

$$
y^{\prime \prime}=\left(y^{\prime}\right)^{\prime} \Rightarrow y^{\prime \prime}=\left(\frac{-x}{y}\right)^{\prime}
$$

$$
y^{\prime \prime}=\frac{-1 \cdot y-(-x) \cdot y^{\prime}}{y^{2}}
$$

$$
\begin{aligned}
& \text { Green } \\
& x^{2}+y^{2}=10 \quad y^{\prime \prime}
\end{aligned}=\frac{-y+x \cdot\left(\frac{-x}{y}\right)}{y^{2}}=\frac{-y-\frac{x^{2}}{y}}{y^{2}}
$$

Exp) Show that $\left(x^{n}\right)^{\prime}=n \cdot x^{n-1}, x>0$
Solution:

$$
\text { anion: } \begin{aligned}
y & =x^{n} \\
\ln y & =\ln x^{n} \quad\left[\ln x^{n}=n \cdot \ln x\right] \\
\left(\ln y^{\prime}\right. & =\left(\ln x^{n}\right)^{\prime} \\
(\ln \cdot)^{\prime} & =(n \cdot \ln x)^{\prime} \\
y \cdot \frac{y^{\prime}}{y} & =n \cdot \frac{1}{x} \cdot y \\
y^{\prime} & =n \cdot \frac{1}{x} \cdot y \\
y^{\prime} & =n \cdot \frac{1}{x} \cdot x^{n} \\
y^{\prime} & =n \cdot x^{n-1}
\end{aligned}
$$

Exp) find an equation of the tagent line to $x^{3}+y^{3}=3 x y$ at $\left(\frac{2}{3}, \frac{4}{3}\right)$

$$
\begin{aligned}
& \left(x^{3}+y^{3}\right)^{\prime}=(3 x y)^{\prime} \\
& 3 x^{2}+3 y^{2} \cdot y^{\prime}=3 \cdot y+3 x \cdot y^{\prime} \\
& 3 x^{2}-3 y=3 x y^{\prime}-3 y^{2} \cdot y^{\prime} \\
& 3\left(x^{2}-y\right)=3 y^{\prime}\left(x-y^{2}\right) \\
& y^{\prime}=\frac{x^{2}-y}{x-y^{2}}
\end{aligned}
$$

$\left.y^{\prime}\right|_{\left(\frac{2}{3}, \frac{4}{3}\right)}=\frac{\left(\frac{2}{3}\right)^{2}-\frac{4}{3}}{\frac{2}{3}-\left(\frac{4}{3}\right)^{2}}=\frac{\frac{4}{9}-\frac{4}{3}(3)}{\left.\frac{2}{3}\right)}-\frac{16}{9}$
$\left.y^{\prime}\right|_{\left(\frac{2}{3}, \frac{4}{3}\right)}=\frac{\frac{4}{9}-\frac{12}{9}}{\frac{6}{9}-\frac{16}{9}}=\frac{\frac{4-212}{9}}{\frac{6-16}{9}}=\frac{-8}{-10}=\frac{8}{10}$
$y-\frac{4}{3}=\frac{8}{10}\left(x-\frac{2}{3}\right)$ the eq. of the target line to the cure at pint P.

Exp) find y^{\prime} for $f(x)=x^{x}$
Solution:

$$
\begin{aligned}
y & =x^{x} \\
\ln y & =\ln x^{\top} \quad\left(\begin{array}{l}
\text { Use } \\
\log a_{1} \text { th mic } \\
\text { diffontiation }
\end{array}\right) \\
\ln y & =x \cdot \ln x
\end{aligned}
$$

Then $y^{\prime} \Rightarrow(12 y)^{\prime}=(x \cdot \ln x)^{\prime}$

$$
\begin{aligned}
y \cdot \frac{y^{\prime}}{y} & =\left(1 \cdot \ln x+x \cdot \frac{1}{x}\right) \cdot y \\
y^{\prime} & =(\ln x+1) \cdot y \\
y^{\prime} & =(\ln x+1) \cdot x^{x}
\end{aligned}\left[\begin{array}{c}
\text { Gives } \\
y=x^{x}
\end{array}\right]
$$

Exp) $y=(1+\sin (2 x))^{x^{2}} \quad$ fid $\frac{d y}{d x}\left(y^{\prime}\right)$
Solution:
Use logarithmic differentiation

$$
\begin{gathered}
\ln y=\ln (1+\sin (2 x))^{x^{2}} \\
\ln y=x^{2} \cdot \ln (1+\sin (2 x)) \\
\frac{d y) d x}{y}=2 x \cdot \ln (1+\sin (2 x))+x^{2} \cdot(1+\sin (2 x))^{\prime} \\
y \cdot \frac{d y / d x}{y}=\left(2 x \cdot \ln (1+\sin (2 x))+\frac{x^{2} \cdot 2 \cdot \cos 2 x}{1+\sin 2 x}\right) \cdot y \\
\frac{d y}{d x}=\left(2 x \cdot \ln (1+\sin (2 x))+\frac{+x^{2} \cdot \cos 2 x}{1+\sin 2 x}\right) \cdot(1+\sin (2 x))^{x^{2}}
\end{gathered}
$$

Exp) find y^{\prime} for $\sin (x+y)=x+\cos y$

$$
\begin{aligned}
& (\sin (x+y))^{\prime}=(x+\cos y)^{\prime} \\
& \cos (x+y) \cdot(x+y)^{\prime}=1-\sin y \cdot y^{\prime} \\
& \cos (x+y) \cdot\left(1+y^{\prime}\right)=1-\sin y \cdot y^{\prime} \\
& \cos (x+y)+\cos (x+y) \cdot y^{\prime}=1-\sin y \cdot y^{\prime} \\
& \cos (x+y) \cdot y^{\prime}+\sin y \cdot y^{\prime}=1-\cos (x+y) \\
& y^{\prime} \cdot(\cos (x+y)+\sin y)=1-\cos (x+y) \\
& y^{\prime}=\frac{1-\cos (x+1)}{\cos (x+y)+\sin y}
\end{aligned}
$$

