4.4. Curve Sketching with Asymptotes

Limits at Infuity
To indicate the "log ran" behavior of a function, we write

$$
\lim _{x \rightarrow \infty} f(x)=L
$$

to show that $f(x)$ approaches L as x approaches $+\infty$ (increases what bonds). We also write $\lim _{x \rightarrow-\infty} f(x)=m$ to slow that $f(x)$ approaches $\bar{m}-\cdots \cdot=$ as x deceases without bounds.
Theorem (Special Limits at Infinity) If A is by real \#, r is a positive rational \#, then $\lim _{x \rightarrow \infty} \frac{A}{x^{r}}=0$

$$
\lim _{x \rightarrow \infty} \frac{5}{x^{10}}=0
$$

If r is such that x^{r} is defined for $x<0$, the $\lim _{x \rightarrow-\infty} \frac{A}{x^{r}}=0$

When evaluating a limit of the form: $\lim _{x \rightarrow \pm \infty} \frac{p(x)}{q^{(x)}}$ where p, q are polynomials, it's often woeful to divide both p, q by the highest power of x that occurs in the denominator. Apply Th. on Special Limits at Infinity.

$$
\begin{aligned}
& \text { Exp) Evaluate } \lim _{x \rightarrow \infty} \frac{3 x^{3}-5 x+9}{5 x^{3}+2 x^{2}-7} \rightarrow \text { highest pres } \\
& \lim _{x \rightarrow \infty}\left(\frac{\frac{3 x^{3}}{x^{3}}-\frac{5 x}{x^{3}}+\frac{9}{x^{3}}}{\frac{5 x^{3}}{x^{3}}+\frac{2 x^{2}}{x^{3}}-\frac{9}{x^{3}}}\right)^{5 x} \\
& \lim _{x \rightarrow \infty} \frac{A}{x^{r}}=0 \\
& \frac{\lim _{x \rightarrow \infty}\left(3-\frac{5}{x^{2}}+\frac{9}{x^{3}}\right)}{\lim _{x \rightarrow \infty}\left(5+\frac{2}{x}-\frac{7}{x^{3}}\right)}=\frac{\lim _{x \rightarrow \infty}(3)-\lim _{x \rightarrow \infty}\left(\frac{5}{x^{2}}\right)+\lim _{x \rightarrow \infty} \frac{9}{x^{3}}}{\lim _{x \rightarrow \infty}(5)+\lim _{x \rightarrow \infty} \frac{2}{x}-\lim _{x \rightarrow \infty} \frac{7}{x^{3}}} \\
& =\frac{\lim _{x \rightarrow \infty} 3}{\lim _{x \rightarrow \infty} 5}=\frac{3}{5}
\end{aligned}
$$

Exp) Evaluate $\lim _{x \rightarrow \infty} \sqrt{\frac{3 x-5}{x-2}}$

$$
\begin{aligned}
& \lim _{x \rightarrow \infty}\left(\frac{3 x-5}{x-2}\right)^{1 / 2}=\underbrace{\left[\lim _{x \rightarrow \infty}\left(\frac{3 x-5}{x-2}\right)\right.}_{\text {highest over } x^{13} x}]^{1 / 2} \\
& =\left[\lim _{x \rightarrow \infty}\left(\frac{\frac{5 x}{x}-\frac{5}{x}}{\frac{x}{x}-\frac{2}{x}}\right)\right]^{1 / 2} \\
& \begin{aligned}
& {\left[\frac{\frac{x}{x}-\frac{2}{x}}{}\right.} \\
= & \left.\lim _{x \rightarrow \infty}\left(\frac{3-\frac{5}{x}}{1-\frac{2}{x}}\right)\right]^{1 / 2}=\left(\frac{\lim _{x \rightarrow \infty}(3)-\lim _{x \rightarrow \infty} \frac{5}{x}}{\lim _{x \rightarrow \infty}(1)-\lim _{x \rightarrow \infty} \frac{2}{x}}\right)^{1}
\end{aligned} \\
& =\left[\frac{\lim _{x \rightarrow \infty}(3)}{\lim _{x \rightarrow \infty}(1)}\right]^{1 / 2}=\left[\frac{3}{1}\right]^{1 / 2}=\sqrt{3}
\end{aligned}
$$

Exp) Evaluate $\lim _{x \rightarrow-\infty} \frac{5 x^{3}-2 x}{x^{2}+1} \rightarrow$ highest power

$$
\begin{aligned}
& \lim _{x \rightarrow-\infty}\left(\frac{\frac{5 x^{3}}{x^{2}}-\frac{2 x}{x^{2}}}{\frac{x^{2}}{x^{2}}+\frac{1}{x^{2}}}\right)=\lim _{x \rightarrow-\infty}\left(\frac{5 x-\frac{2}{x}}{1+\frac{1}{x^{2}}}\right)=\frac{-\infty}{1}=-\infty \\
& \quad \text { infinite Limits }
\end{aligned}
$$

∞ is NDT a number, so an inflite lima doesn't exist in the sense that limits were defined in Ch.2. However, to distinguish " $\pm \infty$ " limit from other ways for a limit not to exist (such as $\lim _{x \rightarrow \infty} \cos x$ fails to exist by oscillation) we write; $\lim _{x \rightarrow c} f(x)=\mp \infty$ The limit statement: $\lim _{x \rightarrow c} f(x)=+\infty$ meas that f increases w/out bound as $x \rightarrow c$ from either side.
$\lim _{x \rightarrow c} f(x)=-\infty$ means that f decreases $x \rightarrow c$ whout bound as $x \rightarrow c$ from either side.

Exp) Find $\lim _{x \rightarrow 2^{-}}\left(\frac{3 x-5}{x-2}\right), \lim _{x \rightarrow 2^{+}}\left(\frac{3 x-5}{x-2}\right)$

$$
\begin{aligned}
& \lim _{x \rightarrow 2^{-}}\left(\frac{3 x-5}{x-2}\right)=\frac{\lim _{x \rightarrow 2^{-}}(3 x-5)}{\lim _{x \rightarrow 2^{-}}(x-2)}=\frac{1}{\lim _{x \rightarrow 2^{-}}(x-2)} \\
& =\frac{1}{\text { "ery.tiny. }}=-\infty
\end{aligned}
$$

$$
\lim _{x \rightarrow 2^{+}}\left(\frac{3 x-5}{x-2}\right)=\frac{1}{\lim _{x \rightarrow 2^{+}}(x-2)}=\frac{1}{\text { "ery }^{+i n y}}=+\infty
$$

Graphs w/ Asymptotes
Vertical Asymptote: The line $x=C$ is a vertical asymptote (V.A) of the groph of f if either of the re-sichd limits $\lim _{x \rightarrow c^{-}} f(x)$ or $\lim _{x \rightarrow c^{+}} f(x)$ is infinite
Horizatal Asymptote: The line $y=L$ is a herizatal asymptote (H.A.) of the graph of f is:

$$
\lim _{x \rightarrow \infty} f(x)=L \text { or } \lim _{x \rightarrow-\infty} f(x)=m \text {. }
$$

Simplify rational fuction first, then look for values that cause the denominator to be o (and the numerator not to be zero).
Exp) Find the V.A of $f(x)=\frac{x^{2}-4}{x-2}$

$$
\begin{aligned}
& f(x)=\frac{(x-2)(x+2)}{x+2}=x+2 ; \quad \begin{array}{l}
x \neq 2 \\
g(x)=x+2
\end{array} \\
& \text { fix) does 't } \\
& \text { have a viA. }
\end{aligned}
$$

Exp) Graph a rational function $f(x)=\frac{3 x-5}{x-2}$
Step1) $f(x)$

$$
\begin{aligned}
& x-\operatorname{lnt}: y=0=f(x)=\frac{3 x-5}{x-2}=0 \Rightarrow \begin{array}{l}
3 x-5=0 \\
x=5 / 3\left(\frac{5}{3}, 0\right)
\end{array} \\
& y \text {-int: } x=0 \Rightarrow f(0)=\frac{3 \cdot 0-5}{0-2}=\frac{-5}{-2}=\frac{5}{2} \quad\left(0, \frac{5}{2}\right)
\end{aligned}
$$

V.A: $\begin{gathered}x-2=0 \\ x=2\end{gathered} \quad(f(x)$ is NOT defined $a t x=2)$
$(f(x)$ can NDT cooss V.A.)

$$
\begin{aligned}
& \frac{\text { H.A: }}{\lim _{x \rightarrow \infty}}\left(\frac{3 x-5}{x-2}\right)=\lim _{x \rightarrow \infty}\left(\frac{\frac{3 x}{x}-\frac{5}{x}}{\frac{x}{x}-\frac{2}{x}}\right)=\lim _{x \rightarrow \infty}\left(\frac{3-\frac{5}{x}}{1-\frac{2}{x}}\right) \\
& \left.\begin{array}{c}
=\lim _{x \rightarrow \infty}\left(\frac{3}{1}\right)=3 \\
\lim _{x \rightarrow-\infty}\left(\frac{3-\frac{5}{x}}{1-\frac{2}{x}}\right)=3
\end{array}\right\} \lim _{x \rightarrow \mp \infty} f(x)=3
\end{aligned}
$$

$$
\text { Step) } f^{\prime}(x)=\frac{-1}{(x-2)^{2}} \quad\binom{f(x) \text { is NDT }}{\text { defined at } x=2}
$$

Find first-order critical \#s:

$$
f^{\prime}(x)=0 \text { ne re } \underbrace{O N E_{E}}_{\substack{x=2 \\ \text { V. } A}} \quad f^{\prime}(x)=\frac{-1}{(x-2)^{2}}
$$

When constructing the sign chat for $f^{\prime}(x)$ we must include x-cooed. of V.A $(x=2)$

$$
\text { sign of } f^{\prime}(x)
$$

$$
\frac{-}{f}=-
$$

$-\infty$	2	$+\infty$
sin en of $1(x)$	-	-
incl		
der.		

$f(x)$ is decreasing on $(-\infty, 2),(2, \infty)$
$f(x)$ has no local min/inax (noNE)

Steps) $f^{\prime \prime}(x)=\frac{2}{(x-2)^{3}}$
$f(x)$ is not defined at $x=2$
$f^{\prime \prime}(x)=0$ or DNE - nonep Coldbuen
testpoints: $x=1,3$
is there a PoI

$$
\begin{aligned}
& f^{\prime \prime}(1)=\frac{2}{(1-2)^{3}}=\frac{+}{-}(-) \\
& f^{\prime \prime}(3)=\frac{2}{(3-2)^{3}}=\frac{+}{+}(+)
\end{aligned}
$$

$$
\text { at } x=2 \text { ? }
$$

NO!
$f(x)$ is concare down on $(-\infty, 2)$
$f(x)$ is concace up on $(2, \infty)$ there's so pont of inflection ($P_{0} I$).

sign chart for $f^{\prime}(x)$ $-\infty$$+\infty$
sine off $(x)$$-$
incel
der.

Step 4) important points:

