Identify and correct the error in the following argument. Suppose $y^{2}+2 y=2 x^{3}-7$. Differentiating both sides with respect to x to find $\frac{d y}{d x}$, we have $2 y+2 \frac{d y}{d x}=6 x^{2}$, which implies that $\frac{d y}{d x}=3 x^{2}-y$.

The error was: the student did not use implicit differentiation correctly. The error was corrected below:

$$
\begin{aligned}
& 2 y \cdot \frac{d y}{d x}+2 \cdot \frac{d y}{d x}=6 x^{2} \\
& \frac{d y}{d x}(2 y+2)=6 x^{2} \\
& 2 y+2 \\
& 2 y+2 \\
& \frac{d y}{d x}=\frac{6 x^{2}}{2(y+1)}=\frac{3 x^{2}}{y+1}
\end{aligned}
$$

We will relate the rates of change of different variables with respect to time.

Procedure for solving related rates pro.
(1) Draw a fiume, assign variables to quantities that vary (What's not changing (a constant) vs. what's charily (variable))
(2) Find a formula or an equation that relates the variables
(1) Differentiate the equation (usually implicitly w/ respect to time)
(4) Substitute specific values and solve algebraically for any required rate (use correct units)

Steps $1 \& 2$ involve reading b interpreting the pro. Step 3 is implicit differetiation/Step4 Algebra

Expl) A spherical balloon is filled $w /$ gas. When $r=2 \mathrm{ft}$, the radius is increasing at the rate of $\frac{1}{6} \frac{\mathrm{ft}}{\mathrm{min}}$. How fort is the volume changing at this time?
$\left(V=\frac{4}{3} \pi r^{3}\right)$

$$
\left(V=\frac{4}{3} \pi r^{3}\right)
$$

Solution
(1) $0 a^{\prime \prime}$

$r \rightarrow$ radius
$V \rightarrow$ volume

Given: $r=2 f t$.

$$
\begin{aligned}
& \frac{d r}{d t}=+\frac{1}{6} \frac{f t}{\text { min }}\left(\begin{array}{l}
\text { rate of chapel } \\
\text { of radius } \\
\text { wit time }
\end{array}\right) \\
& \text { Ashed: } \frac{d V}{d t}=?\left(\begin{array}{l}
\text { Low is the } \\
\text { Volume chenesis } \\
\text { wit time? }
\end{array}\right)
\end{aligned}
$$

(2) Formula: $V=\frac{4}{3} \pi r^{3}$
(3) Implicit Diff. writ (w/respect to) time:

$$
(V=V(t)) \quad V=\frac{4}{3} \pi r_{\text {constant }}^{3}(r=r(t))
$$

$$
\frac{d V}{d t}=\frac{4}{3} \cdot \pi \cdot 3 \cdot r^{2} \cdot \frac{d r}{d t}
$$

(4) Given: the moment when $r=2 \mathrm{ft}, \frac{d r}{d t}=\frac{1}{6} \mathrm{ft} / \mathrm{min}$. substitute these speficic values in the eq. step (3)

$$
\begin{gathered}
\frac{d V}{d t}=\frac{4}{3} \cdot \pi \cdot 3 \cdot r^{2} \cdot \frac{d r}{d t} \\
\frac{d V}{d t}=\frac{r^{2}}{3} \cdot \pi \cdot \beta^{2} \cdot 2^{2} \cdot \frac{1}{\hbar_{3}}=\frac{8 \pi}{3} \frac{f^{3}}{\mathrm{~mm} .}
\end{gathered}
$$

Volume is increasing at a rate of $\frac{8 x}{3} \frac{\mathrm{ft}^{3}}{\mathrm{~min}}$.

Units* how do we measure volume? how do we measure time? prob.

Expo) Leaning Ladder Prob.
when the foot of the ladder
is 4 m away from the wall and the foot is moving away
at the rate of $2 \mathrm{~m} / \mathrm{sec}$. how fast is the boy descending??
(1)

Given:
 $x \rightarrow$ distance between foot of the ladder and the wall
$y \rightarrow$ distance between the bap
Asked: when $x=4 m$. , $\frac{d x}{d t}=2 \mathrm{~m} / \mathrm{s} \cdot \frac{d y}{d t}=$?
(2) $x^{2}+y^{2}=5^{2}$
(3) $2 x \cdot \frac{d x}{d t}+2 y \cdot \frac{d y}{d t}=0$
(4) When $x=4 \mathrm{~m}$.,$\frac{d x}{d t}=2 \mathrm{~m} / \mathrm{s}$.; $\frac{d y}{d t}=$?

4 m .
3-4-5 Special Right
Triangle

$$
\begin{gathered}
y^{2}+4^{2}=5^{2} \\
y^{2}=25-16=9 \\
y=3 \mathrm{~m} .
\end{gathered}
$$

$$
2 x \cdot \frac{d x}{d t}+2 y \cdot \frac{d y}{d t}=0
$$

Substitute given (specific) values:

$$
\begin{aligned}
2 \cdot 4 \cdot 2+2 \cdot 3 \cdot \frac{d y}{d t} & =0 \\
16+6 \cdot \frac{d y}{d t} & =0 \\
\frac{d y}{d t} & =\frac{-16}{6}
\end{aligned}=\frac{-8}{3} \mathrm{~m} / \mathrm{sec} .
$$

The bay is descending at a rate of $\frac{8}{3} \frac{\mathrm{~m}}{\mathrm{sec}}$.

