How many of the graphs below show functions with more than one horizontal tangent line? Hint: What is the slope of a horizontal line?

Graph I

Graph III

Graph IV

The Derivative
Computing the slope of the line tangent to the graph of a function f at a given point a gives us the instantaneous rate of change in f at a. This information about the behavior of a function is so important that it has its own name and notation.

DEFINITION The Derivative of a Function at a Point
The derivative of \boldsymbol{f} at \boldsymbol{a}, denoted $f^{\prime}(a)$, is given by either of the two following limits, provided the limits exist and a is in the domain of f :

$$
\begin{equation*}
f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} \quad(1) \quad \text { or } \quad f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(X+h)-f(\mathbf{X})}{h} \tag{2}
\end{equation*}
$$

If $f^{\prime}(a)$ exists, we say that f is differentiable at a.

The limits that define the derivative of a function at a point are exactly the same limits used to compute the slope of a tangent line and the instantaneous rate of change of a funcion at a point. When you compute a derivative, remember that you are also finding a rate of change and the slope of a tangent line.

EXAMPLE 4 Derivatives and tangent lines Let $f(x)=\sqrt{2 x}+1$. Compute $f^{\prime}(2)$, the derivative of f at $x=2$, and use the result to find an equation of the line tangent to the graph of f at $(2,3)$.

$$
\text { 1) }\left.f^{\prime}(2) \rightarrow m_{\operatorname{ta}}\right|_{x=2}
$$

$$
\begin{aligned}
a & =2 \quad f(2)=3 \rightarrow f(2)=\sqrt{2 \cdot 2}+1=2+1=3 \\
f^{\prime}(2) & =\lim _{x \rightarrow 2} \frac{f^{\prime}(x)-f(2)}{x-2}=\lim _{x \rightarrow 2}\left(\frac{(\sqrt{2 x}-2)}{x-2}\right) \cdot\left(\frac{\sqrt{2 x}+2}{\sqrt{2 x}+2}\right)
\end{aligned}
$$

3.2. The Derivative as a Function

The derivative of a function f at a point a is the slope of the line tangent to the graph of f that passes through (a, $\mathrm{f}(\mathrm{a})$).
We now extend this concent of a derivative at a point to all points in the domain of f to create a new function called the derivative of f.

The tangent line changes along the curve of a function, therefore, the slope of the tangent line for f is itself a function, called the derivative of f.

$$
f^{\prime}(x)
$$

To emphasize a important point $f^{\prime}(2)$ or $f^{\prime}(-2)$ or $f^{\prime}(a)$, for a real number a, are real numbers, whereas f^{\prime} and $f^{\prime}(x)$ refer to the derivative function.
 differentiation, and to differentiate f means to find f^{\prime}.

Figure 3.14
provided the limit exists and x is in the domain of f. If $f^{\prime}(x)$ exists, we say that f is differentiable at x. If f is differentiable at every point of an open interval I, we say
 that f is differentiable on I.
DEFINITION The Derivative Function
The derivative of f is the function

Remanded

$$
f^{\prime}(x)
$$

NT $f^{\prime}(\underline{a})$

$$
\lim _{h \rightarrow 0}\left(\frac{1}{1}\right)
$$

harizatal taget $\Rightarrow m \tan \mid x=0=0$

$$
\begin{aligned}
& f^{\prime}(x)=-2 x+6 \\
& \left.f^{\prime} 6\right)=-2 \cdot 6+6=-6 \\
& \text { neg. slope }
\end{aligned}
$$

$f^{\prime \prime}(n)=6$ pos. slope

Recall from Algebra:

Derivative Notation

In addition to the notation $f^{\prime}(x)$ and $\frac{d y}{d x}$, other common ways of writing the derivative include

$$
\frac{d f}{d x}, \quad \frac{d}{d x}(f(x)), \quad D_{x}(f(x)), \quad \text { and } \quad y^{\prime}(x) .
$$

The following notations represent the derivative of f evaluated at a.

$$
f^{\prime}(a), \quad y^{\prime}(a),\left.\quad \frac{d f}{d x}\right|_{x=a}, \quad \text { and }\left.\quad \frac{d y}{d x}\right|_{x=a}
$$

> The notation $\frac{d y}{d x}$ is read the derivative of y with respect to x or $d y d x$. It does not mean $d y$ divided by $d x$, but it is a reminder of the limit of the quotient $\frac{\Delta y}{\Delta x}$.
> The derivative notation $d y / d x$ was introduced by Gottfried Wilhelm von Leibniz (1646-1716), one of the coinventors of calculus. His notation is used today in its original form. The notation used by Sir Isaac Newton (1642-1727), the other coinventor of calculus, is rarely used.

EXAMPLE 2 A derivative calculation Let $y=f(x)=\sqrt{x}$.
a. Compute $\frac{d y}{d x}$.
b. Find an equation of the line tangent to the graph of f at $(4,2)$.

Figure 3.17

$$
x \rightarrow \infty
$$

Quick check 3 In Example 2, do the slopes of the tangent lines increase or decrease as x increases? Explain.

Graphs of Derivatives
Sunday, October 4, 2020
The function f^{\prime} is called the derivative of f because it is derived from f.
EXAMPLE 4 Graph of the derivative Sketch the graph of f^{\prime} from the graph of f
(Figure 3.18).

$$
\begin{aligned}
& m_{\text {tan }}=\frac{\frac{1.5-4}{3 / 2-4}=-2.5}{5-0}=-\frac{-1}{2} \\
& f^{\prime}(x) \\
& x=0, x=-2 \\
& f^{\prime}(x) \quad f^{\prime}(n) \\
& f^{\prime}(-2) \\
& \text { undefined }
\end{aligned}
$$

THEOREM 3.1 Differentiable Implies Continuous

If f is differentiable at a, then f is continuous at a.

THEOREM 3.1 (ALTERNATIVE VERSION) Not Continuous Implies Not Differentiable If f is not continuous at a, then f is not differentiable at a.

When Is a Function Not Differentiable at a Point?

A function f is not differentiable at a if at least one of the following conditions holds:
a. f is not continuous at a (Figure 3.24).
b. f has a corner at a (Figure 3.25).
c. f has a vertical tangent at a (Figure 3.26).

Figure 3.24

Function's "Point of discontinuity"

Figure 3.25

Function at its "corner"
 diff.
at
$x=0$

(a)

(b)

Figure 3.26
"Vertical Tangent" Line with "cusp"
"Vertical Tangent" Line without a "cusp"

EXAMPLE 7 Continuous and differentiable Consider the graph of g in Figure 3.27.
a. Find the values of x in the interval $(-4,4)$ at which g is not continuous.
b. Find the values of x in the interval $(-4,4)$ at which g is not differentiable.
c. Sketch a graph of the derivative of g.

Figure 3.27
a. g is NBT cat.
b. g is NDT diff.
at

3.3 Rules of Differentiation

If you always had to use limits to evaluate derivatives, as we did in Section 3.2, calculus would be a tedious affair. The goal of this chapter is to establish rules and formulas for quickly evaluating derivatives-not just for individual functions but for entire families of functions. By the end of the chapter, you will have learned many time-saving rules and formulas, all of which are listed in the endpapers of the text.

DIFFERENTIATION RULES

1. Constant Rule: If $f(x)=c(c$ constant $)$, then $f^{\prime}(x)=0$.
2. Power Rule: If r is a real number, $\frac{d}{d x} x^{r}=r x^{r-1}$
3. Constant Multiple Rule: $\frac{d}{d x}(c \cdot f(x))=c \cdot f^{\prime}(x)$

4. Sum Rule: $\frac{d}{d x}[f(x) \pm g(x)]=f^{\prime}(x) \pm g^{\prime}(x)$
5. Product Rule: $\frac{d}{d x}[f(x) g(x)]=f(x) g^{\prime}(x)+f^{\prime}(x) g(x)$
6. Quotient Rule: $\frac{d}{d x}\left[\frac{f(x)}{g(x)}\right]=\frac{g(x) f^{\prime}(x)-f(x) g^{\prime}(x)}{[g(x)]^{2}}$

$$
f(x)=x^{3}, f^{\prime}(x)=3 \cdot x^{2}
$$

EXAMPLE 2 Derivatives of constant multiples of functions Evaluate the following derivatives.
a. $\frac{d}{d x}\left(-\frac{7 x^{11}}{8}\right)$
b. $\frac{d}{d t}\left(\frac{3}{8} \sqrt{t}\right)$

$$
\text { b. } \frac{d}{d t}\left(\frac{3}{8} \cdot t^{1 / 2}\right)=\frac{3}{8} \cdot \frac{1}{2} \cdot t^{-1 / 2}=\frac{3}{16} \cdot t^{-1 / 2}
$$

THEOREM 3.6 The Derivative of e^{x}
The function $f(x)=e^{x}$ is differentiable for all real numbers x, and

$$
\frac{d}{d x}\left(e^{x}\right)=e^{x}
$$

EXAMPLE 4 Finding tangent lines
a. Write an equation of the line tangent to the graph of $f(x)=2 x-\frac{e^{x}}{2}$ at the point $\left(0,-\frac{1}{2}\right)$.
b. Find the point (s) on the graph of f at which the tangent line is horizontal.

The Power Rule cannot be applied to exponential functions; that is, $\frac{d}{d x}\left(e^{x}\right) \neq x e^{x-1}$. Also note that $\frac{d}{d x}\left(e^{10}\right) \neq e^{10}$. Instead, $\frac{d}{d x}\left(e^{c}\right)=0$, for any real number c, because e^{c} is a constant.

$$
f^{\prime}(0)=2-\frac{1}{2} \cdot \ell^{2^{1}}=2-\frac{1}{2}=\frac{3}{2}=m+\left.\operatorname{ta}\right|_{x=0}
$$

b. $\left.f^{\prime}(x)\right|_{x=a}=0 \Rightarrow 2-\frac{1}{2} \cdot e^{a}=0$

$$
\begin{aligned}
& 2=\frac{1}{2} \cdot e^{a}=\ln _{4}=e^{(a)} \\
& \ln 4=a \cdot \operatorname{he} e^{1}=a=\ln 4
\end{aligned}
$$

Recall $f(x)=2 x-\frac{e^{x}}{2}$

$$
f(a) \Rightarrow f(\ln 4)=2 \cdot \ln 4-\frac{e^{\ln 4}}{2}=2 \cdot \ln 4-2
$$

$(\ln 4,2 \ln 4-2)$ is the point at which the tangent line is horizontal

$$
\left.\begin{array}{rl}
(x, y) \\
f^{\prime}(x) & =3 x^{2}-12=0 \\
& =3\left(x^{2}-4\right)=0 \\
& =3(x-2)(x+2)
\end{array}\right\} \begin{aligned}
& \frac{(a, f(a))}{f^{\prime}(x)=0} \\
& \frac{3(x-2)}{2} \frac{(x+2)}{-2}=0 \\
& \\
& \\
& \\
& \\
& x=2,-2)(x+2)=0
\end{aligned}
$$

Points are: $(2, f(2)),(-2, f(-2))$.

