5.4. Working with integrals

We will use the symmetry of functions to simplify integral calculations.
Even F: $\uparrow \uparrow^{y} \uparrow \quad f(x)=x^{2}$
symmetric wot $y$-axis $f(x)=f(-x)$ Fee F. Test

$$
\begin{aligned}
f(-x)=(-x)^{2}=x^{2} \quad & f(x)=f(-x) \\
& \int_{-a}^{a} f(x) d x=2 \cdot \int_{0}^{a} f(x) d x
\end{aligned}
$$

Odd F. $f(-x)=-f(x)$ odd F. Tout
sym. due to the origin

$$
\begin{aligned}
& \text { e.g: } f(x)=x^{3} \\
& f(-x)=(-x)^{3}=-x^{3} \\
& -f(x)=-x^{3}
\end{aligned}
$$




$$
\begin{aligned}
& =\int_{-\pi / 2}^{\pi / 2} \cos x d x-4 \cdot \int_{-\pi / 2}^{\pi / 2} \sin x d x=2 \cdot \int_{0}^{0 / 2} \cos x d x \\
& 2 \int_{0}^{\pi / 2} \cos x d x=\left.2 \cdot \sin x\right|_{0} ^{\pi / 2}=2(\underbrace{\sin \pi / 2}_{1}-\underbrace{\sin 0}_{0})=2 \\
& \text { Y so try it! Evaluate } \int_{-2}^{2}\left(\frac{x^{3}-4 x}{x^{2}+1}\right) d x
\end{aligned}
$$

A) -2
B) 2
c) can not compute

Erin Test, $f(x)=f(-x) \quad f(x)=\frac{x^{3}-4 x}{x^{2}+1} \quad f(-x)=\frac{(-x)^{3}-4(-x)}{(-x)^{2}+1}=\frac{-x^{3}+4 x}{x^{2}+1}$
Odd Test: $-f(x)=\underbrace{f(-x)} \quad \begin{aligned} & x^{2}+1 \\ & f(x) \neq f(-x) \text { Not Elea }\end{aligned}$
$-f(x)=-\widehat{\left(\frac{x^{3}}{x^{2}+1}\right)}=\frac{-x^{3}+4 x}{x^{2}+1} \quad f(-x)=-f(x)$ odd $F$.

Answer: D) 0


5,5. Substitution Rule
What are the antiderivatiles of $\sin \left(x^{2}\right), \frac{\sin x}{x}, x^{x}$ ?
Start with familiar derivative roles and work backward to find new derivative rules.

$$
\int_{-}^{\cos 2 x \cdot d x}=\frac{\sin 2 x}{2}+C \frac{d}{d x}\left(\frac{\sin (2 x)}{2}\right)=\frac{\cos (2 x) \cdot 2}{2}
$$

Triat-and-erer is ot practical for complex integrals.
Eff: Calculate

$$
\underbrace{\int 4 x^{3} \cdot\left(x^{4}+5\right)^{10} d x}
$$

Substitution Rule: Let $F^{\prime}=f$
The: $\quad \int f(u) \cdot u^{\prime} \cdot d x=\int f(u) \cdot d u=F(u)+C$

$$
\begin{aligned}
& u=x^{4}+5 \\
& d u=4 x^{3} \cdot d x \\
& \int u^{10} \cdot d u=\frac{u^{11}}{11}+C=\frac{\left(x^{4}+5\right)^{11}}{11}+C
\end{aligned}
$$

You try it! Evaluate $\int x^{9} \cdot \sin \left(x^{10}\right) \cdot d x$
A) $\frac{-\sin \left(x^{10}\right)}{10}+C$
B) $\frac{\cos \left(x^{10}\right)}{10}+C$
C) $-\frac{\cos \left(x^{1 n}\right)}{11}+C$
D) $\frac{-\cos \left(x^{10}\right)}{10}+C$
inside F.? $\quad x^{10}=u$

$$
\begin{aligned}
& \frac{10 \cdot x^{9} \cdot d x}{10}=\frac{d u}{10} \Rightarrow x^{9} \cdot d x=\frac{d u}{10} \\
& \int x^{9} \cdot \sin \left(x^{10}\right) d x=\int \sin \left(x^{10}\right) \cdot x^{9} \cdot d x=\int \sin (u) \cdot \frac{d u}{10} \\
&=\frac{-\cos u}{10}+C=\frac{-\cos \left(x^{10}\right)}{10}+C
\end{aligned}
$$

Answer: D
$u-s u b s . ~ f o r ~ D e f i n i t e ~$
$b$
$u(b)$
$b$

$$
\int_{a}^{b} f(u) \cdot u^{\prime} \cdot d x=\int_{u(a)}^{u(b)} f(u) \cdot d u
$$

1) limits of stegation
2) integrad
3) differetial

Exp: Evaluate $\int_{0}^{\pi / 2} \frac{\sin ^{4} x \cdot \cos x \cdot d x}{\frac{(\sin x)^{4}}{u}}$
$\begin{aligned} u & =\sin x \\ d u & =\cos x \cdot d x\end{aligned}$
$x=\pi / 2 \quad u=\sin \pi / 2=1$
$x=0 \quad u=\sin 0=0$

$$
\int_{0}^{1} u^{4} \cdot d u=\left.\frac{u^{5}}{5}\right|_{0} ^{1}=\frac{1^{5}}{5}-\frac{0^{5}}{5}=\frac{1}{5}
$$

You try
$\frac{\ln (17)}{2}$
Evaluate
B) $\ln (8.5)$
c) $\frac{\ln (19)}{2}$
D) $\frac{-\ln (17)}{4}$

$$
\begin{aligned}
& \frac{u=x^{2}+1}{\frac{d u}{2}=\frac{2 x \cdot d x}{2}} \Rightarrow \begin{array}{ll}
\int_{1}^{17} \frac{d u}{2 u} & =\frac{d u}{2} \int_{1}^{17} \frac{d u}{u}
\end{array} \quad \begin{array}{l}
x=4 \Rightarrow u=x^{2}+1=4^{2}+1=17 \\
x=0 \Rightarrow u=x^{2}+1=1
\end{array} \\
&=\left.\frac{1}{2} \ln |u|\right|_{1} ^{17}=\left.\frac{1}{2} \cdot \ln (u)\right|_{1} ^{17} \\
&=\frac{1}{2}(\ln (17) \underbrace{\prime}_{\varnothing}=\frac{d u}{u}
\end{aligned}
$$

