62. Regions Between Cures

Let f in be continuous f. with $f(x) \geqslant g(x)$ on $[a, b]$. The area of the region bounded by f \& g o $[a, b]$ is A.

Recall:

$$
\begin{aligned}
& \text { 在 } \int_{a}^{b}(f(x)-0) \cdot d x=\int_{a}^{b} f(x) d x
\end{aligned}
$$

Steps: 1) Sketch the area (need to k ow graphing pret (functions!)
2) Determine the boundaries, a and b (find intersecting points of functions)
3) Identify top/brttom graphs per sub-intercal
4) setup def integral
5) Integrate

Even F $f(x)=f(-x) \quad f(-x)=5-(-x)^{2}=5-x^{2}$
Exp) Find the area of the region bounded by the graphs of $f(x)=5-x^{2}$ and $g(x)=x^{2}-3$.

(broth f, g are cue. f.) Even: $f(x)=f(-x)$
both f, g are sym. writ y-axis
2) Boundaries?
$y=f(x)=g(x)$ to find intersect.p.

$$
\underset{\frac{8}{2}=\frac{2 x^{2}}{2}}{5-x^{2}=x^{2}-3} \Rightarrow x^{2}=4 \Rightarrow x= \pm 2
$$

3) Top: $f(x)$, baton.: $\rho(x)$
4) $\int_{-2}^{2}(f-\rho) d x=\int_{-2}^{5} \begin{gathered}\left.5-x^{2}-\left(x^{2}-3\right)\right) d x=\int_{-2}^{2} \\ 8-2 x^{2}\end{gathered} \int_{-2}^{2}\left(8-2 x^{2}\right) d x$
use sym. to re-wite the integral
$2 \cdot \int_{0}^{2}\left(8-2 x^{2}\right) d x=2 \cdot\left(\frac{\left.8 x-\frac{2 x^{3}}{3}\right)\left.\right|_{0} ^{2}=2\left(8 \cdot 2-\frac{2 \cdot 2^{3}}{3}-0\right) ~}{0}\right.$

$$
=2\left(\frac{16}{1}-\frac{16}{3}\right)=2\left(\frac{32}{3}\right)=\frac{64}{3}
$$

You try it!
Exp2) Find the area of the region bounded by the cine of $y=e^{2 x}-3 \cdot e^{x}+2$ and the x-axis $(y=0)$
A) $2-\ln 2$
B) $1+\ln 3$
C) $\frac{3}{2}-\ln 2$
D) $\frac{3}{2}-2 \cdot \ln 2$
E) $\frac{-3}{2}+h 2$

$$
\begin{gathered}
e^{2 x}-3 \cdot e^{x}+2=0 \\
-2^{-1}-1 \\
\left(e^{x}-2\right) \cdot\left(e^{x}-1\right)=0 \\
e^{x}=2, \quad e^{x}=1 \\
\ln e^{x}=\ln 2, \quad \ln e^{x}=\ln 1 \\
x \cdot \ln e^{2}=\ln 2, \quad x \cdot \ln e=0
\end{gathered}
$$

zeros $x=\ln 2, \quad x=0 \quad$ (bondaies/intersectly

$$
\int_{0}^{\ln 2}(\underbrace{0}_{\text {top }}-\sqrt{\left(e^{2 x}-3 e^{x}+2\right)}) \cdot d x
$$

$\ln 2$

$$
=\int_{0}^{\ln 2}\left(-e^{2 x}+3 \cdot e^{x}-2\right) d x=\left.\left(\frac{-e^{2 x}}{2}+3 \cdot e^{x}-2 x\right)\right|_{0} ^{\ln 2}
$$

$$
\begin{aligned}
& =\left(\frac{-e^{2 \cdot \ln 2}}{2}+3 \cdot e^{\ln 2}-2 \cdot \ln 2-\left(\frac{-e^{0}}{2}+3 \cdot e^{0}-0\right)\right) \\
& =\left(\frac{-e^{\ln 4}}{2}+3 \cdot 2-2 \cdot \ln 2-\left(\frac{-1}{2}+\frac{3}{1}\right)\right) \\
& =\left(\frac{-4}{2}+6-2 \cdot \ln 2-\frac{5}{2}\right)=\frac{-2+6}{4}-2 \cdot \ln 2 \frac{-5}{2} \\
& =4-\frac{5}{2}-2 \ln 2=\frac{3}{2}-2 \cdot 42
\end{aligned}
$$

$$
A=\int_{c}^{b}(G(y)-F(y)) d y+\int_{b}^{d}(F(y)-G(y)) d y
$$

Exp) Find the area bounded by the cure of $f(x)=\sqrt{x}, g(x)=x$

$$
\begin{aligned}
& \xrightarrow{10} 1 \\
& \text { use vertical strip! } d \underline{x} \\
& \sqrt{x}=x \Rightarrow x=x^{2} \Rightarrow x^{2}-x=0 \\
& x(x-1)=0 \Rightarrow x=0,1 \\
& \int_{0}^{1}\left(\sqrt{\left.\frac{1}{x}-x\right)} d x=\left.\left(\frac{x^{3 / 2}}{3 / 2}-\frac{x^{2}}{2}\right)\right|_{0} ^{1}=\frac{1}{6}\right.
\end{aligned}
$$

Exp) Find the area bounded by the cure of $y=\sqrt{x}, y=x$

$$
\begin{array}{rl}
\sqrt{x}=x & x=x^{2} \Rightarrow x^{2}-x=0 \\
x(x-1)=0 \Rightarrow x=0,1
\end{array}
$$

use horizontal stript $d y$ Re-wite as $x=$?

$$
y=\sqrt{x} \Rightarrow y^{2}=x \Rightarrow x=y^{2} \quad 1 \quad y=x \Rightarrow x=y
$$

$$
\int_{0}^{1}\left(y-y^{2}\right) d y=\left.\left(\frac{y^{2}}{2}-\frac{y^{3}}{3}\right)\right|_{0} ^{1}=\left(\frac{1}{2}-\frac{1}{3}-0\right)=\frac{1}{6}
$$

* We have to get the same area w/ horizatal b vertical strips.

Mouthy it Determine the area of the shaded region:

Hint: $\sin 2 y=2 \cdot \sin y \cdot \cos y$ $(x, y) \rightarrow(\cos x, \sin y)$ $(+,-)$ $y=1$

$$
\begin{aligned}
& \cos y=-\sin 2 y=-2 \cdot \sin y \cdot \cos y \Rightarrow \cos y+2 \cdot \sin y \cdot \cos y=0 \\
& \sum_{0}^{\cos y} \cdot(\underbrace{1+2 \cdot \sin y}_{0})=0
\end{aligned}
$$

$$
\begin{aligned}
& 1+2 \sin y=0 \Rightarrow \sin y=-1 / 2 \Rightarrow \arcsin y=\arcsin \left(-\frac{1}{2}\right) \\
& \frac{1}{1} \operatorname{unt} \text { circle } \operatorname{sn}\left(\frac{11 \pi}{6}\right)=-\frac{1}{2}
\end{aligned}
$$

$\frac{11 \pi}{6}=\frac{-\pi}{6}$ sine y is negative: $y=\frac{-\pi}{6}$

$$
\begin{aligned}
& \int_{-\pi / 6}^{\pi / 2}(\cos y-(-\sin 2 y)) d y=\int_{-\pi / 6}^{\pi / 2}(\cos y+\sin 2 y) d y \\
&=\left.\left(\sin y-\frac{\cos 2 y}{2}\right)\right|_{-\pi / 6} ^{\pi / 2}(R-L) d y \\
&=\left(\sin \frac{\pi}{2}-\frac{\cos (2 \cdot(\pi / 4))}{2}-\left(\sin \left(-\frac{\pi}{6}\right)-\frac{\cos \left(2 \cdot-\frac{\pi}{6}\right)}{2}\right)\right. \\
&=\left(1-\frac{(-1)}{2}-\left(\frac{-1}{2}-\frac{1 / 2}{2}\right)\right) \\
&=\left(1+\frac{1}{2}-\left(\frac{-1}{2}-\frac{1}{4}\right)\right)=\frac{3}{2}+\frac{3}{4}=\frac{9}{4}
\end{aligned}
$$

