End Behavior

The behavior of polynomials as $x \to \pm \infty$ is an example of what is often called *end behavior*. Having treated polynomials, we now turn to the end behavior of rational, algebraic, and transcendental functions.

EXAMPLE 3 End behavior of rational functions Use limits at infinity to determine

a.
$$f(x) = \frac{3x+2}{x^2-1}$$

b.
$$g(x) = \frac{40x^4 + 4x^2 - 1}{10x^4 + 8x^2 + 1}$$

c.
$$h(x) = \frac{x^3 - 2x + 1}{2x + 4}$$

a. $f(x) = \frac{3x+2}{x^2-1}$ b. $g(x) = \frac{40x^4+4x^2-1}{10x^4+8x^2+1}$ c. $h(x) = \frac{x^3-2x+1}{2x+4}$ Step 1) X -> highest degree in the

Div. ALL

$$\frac{x^{2}-2+\frac{1}{x}}{2+\frac{1}{x}}$$

$$\frac{\begin{array}{c|c}
x^3-2x+1\\
\hline
x\\
\hline
2x+4\\
\hline
x
\end{array}$$

$$\left(\frac{x^2-1}{2}\right)$$

$$\lim_{X \to -\infty} \left(\frac{\frac{X^2 - 2X + 1}{X}}{\frac{2X + 1}{X}} \right) = \lim_{X \to -\infty} \left(\frac{X^2 - 2}{X} \right)$$

$$\left(\frac{\chi^2-L}{2}\right)$$

No H.A.

THEOREM 2.7 End Behavior and Asymptotes of Rational Functions

Suppose $f(x) = \frac{p(x)}{q(x)}$ is a rational function, where

$$p(x) = a_m x^m + a_{m-1} x^{m-1} + \dots + a_2 x^2 + a_1 x + a_0 \quad \text{and} \quad q(x) = b_n x^n + b_{n-1} x^{n-1} + \dots + b_2 x^2 + b_1 x + b_0,$$

with $a_m \neq 0$ and $b_n \neq 0$.

- **a. Degree of numerator less than degree of denominator** If m < n, then $\lim_{x \to \pm \infty} f(x) = 0$, and y = 0 is a horizontal asymptote of f.
- **b. Degree of numerator equals degree of denominator** If m = n, then $\lim_{x \to \pm \infty} f(x) = a_m/b_n$, and $y = a_m/b_n$ is a horizontal asymptote of f.
- c. Degree of numerator greater than degree of denominator If m > n, then $\lim_{x \to \pm \infty} f(x) = \infty$ or $-\infty$, and f has no horizontal asymptote.
- A Sland asymptote If n = n/r + 1, then $\lim_{x \to \pm \infty} f(x) = \infty$ or $-\infty$, and f has no horizontal asymptote, but f has a slant asymptote.
- e. Vertical asymptotes Assuming f is in reduced form (p and q share no common factors), vertical asymptotes occur at the zeros of q.

$$\frac{H,A.}{x\rightarrow \pm \infty}$$

$$f(x)\rightarrow ?$$

$$y=--$$

$$V.A.$$

$$x\rightarrow a$$

$$x\rightarrow a$$

 $f(x) = \sqrt{x_{x}} = |x| = \sqrt{x}$

EXAMPLE 5 End behavior of an algebraic function Use limits at infinity to deter-

mine the end behavior of an algebraic function. Use limits at infinity to determine the end behavior of
$$f(x) = \frac{10x^3 - 3x^2 + 8}{\sqrt{25x^6 + x^4 + 2}}$$
.

Step 1) $\sqrt[3]{X^6} = \sqrt[3]{X^3} = \sqrt[3]{X^3}$

$$\frac{\int k\rho^{2}}{\int 0} = \lim_{X \to \infty} \left(\frac{\int (0x^{3} - 3x^{2} + 8)}{x^{3}} \right) = \lim_{X \to \infty} \left(\frac{\int (0x^{3} - 3x^{2} + 8)}{x^{3}} \right) = \lim_{X \to \infty} \left(\frac{\int (0x^{3} - 3x^{2} + 8)}{x^{3}} \right) = \lim_{X \to \infty} \left(\frac{\int (0x^{3} - 3x^{2} + 8)}{x^{3}} \right) = \lim_{X \to \infty} \left(\frac{\int (0x^{3} - 3x^{2} + 8)}{x^{3}} \right) = \lim_{X \to \infty} \left(\frac{\int (0x^{3} - 3x^{2} + 8)}{x^{3}} \right) = \lim_{X \to \infty} \left(\frac{\int (0x^{3} - 3x^{2} + 8)}{x^{3}} \right) = \lim_{X \to \infty} \left(\frac{\int (0x^{3} - 3x^{2} + 8)}{x^{3}} \right) = \lim_{X \to \infty} \left(\frac{\int (0x^{3} - 3x^{2} + 8)}{x^{3}} \right) = \lim_{X \to \infty} \left(\frac{\int (0x^{3} - 3x^{2} + 8)}{x^{3}} \right) = \lim_{X \to \infty} \left(\frac{\int (0x^{3} - 3x^{2} + 8)}{x^{3}} \right) = \lim_{X \to \infty} \left(\frac{\int (0x^{3} - 3x^{2} + 8)}{x^{3}} \right) = \lim_{X \to \infty} \left(\frac{\int (0x^{3} - 3x^{2} + 8)}{x^{3}} \right) = \lim_{X \to \infty} \left(\frac{\int (0x^{3} - 3x^{2} + 8)}{x^{3}} \right) = \lim_{X \to \infty} \left(\frac{\int (0x^{3} - 3x^{2} + 8)}{x^{3}} \right) = \lim_{X \to \infty} \left(\frac{\int (0x^{3} - 3x^{2} + 8)}{x^{3}} \right) = \lim_{X \to \infty} \left(\frac{\int (0x^{3} - 3x^{2} + 8)}{x^{3}} \right) = \lim_{X \to \infty} \left(\frac{\int (0x^{3} - 3x^{2} + 8)}{x^{3}} \right) = \lim_{X \to \infty} \left(\frac{\int (0x^{3} - 3x^{2} + 8)}{x^{3}} \right) = \lim_{X \to \infty} \left(\frac{\int (0x^{3} - 3x^{2} + 8)}{x^{3}} \right) = \lim_{X \to \infty} \left(\frac{\int (0x^{3} - 3x^{2} + 8)}{x^{3}} \right) = \lim_{X \to \infty} \left(\frac{\int (0x^{3} - 3x^{2} + 8)}{x^{3}} \right) = \lim_{X \to \infty} \left(\frac{\int (0x^{3} - 3x^{2} + 8)}{x^{3}} \right) = \lim_{X \to \infty} \left(\frac{\int (0x^{3} - 3x^{2} + 8)}{x^{3}} \right) = \lim_{X \to \infty} \left(\frac{\int (0x^{3} - 3x^{2} + 8)}{x^{3}} \right) = \lim_{X \to \infty} \left(\frac{\int (0x^{3} - 3x^{2} + 8)}{x^{3}} \right) = \lim_{X \to \infty} \left(\frac{\int (0x^{3} - 3x^{2} + 8)}{x^{3}} \right) = \lim_{X \to \infty} \left(\frac{\int (0x^{3} - 3x^{2} + 8)}{x^{3}} \right) = \lim_{X \to \infty} \left(\frac{\int (0x^{3} - 3x^{2} + 8)}{x^{3}} \right) = \lim_{X \to \infty} \left(\frac{\int (0x^{3} - 3x^{2} + 8)}{x^{3}} \right) = \lim_{X \to \infty} \left(\frac{\int (0x^{3} - 3x^{2} + 8)}{x^{3}} \right) = \lim_{X \to \infty} \left(\frac{\int (0x^{3} - 3x^{2} + 8)}{x^{3}} \right) = \lim_{X \to \infty} \left(\frac{\int (0x^{3} - 3x^{2} + 8)}{x^{3}} \right) = \lim_{X \to \infty} \left(\frac{\int (0x^{3} - 3x^{2} + 8)}{x^{3}} \right) = \lim_{X \to \infty} \left(\frac{\int (0x^{3} - 3x^{2} + 8)}{x^{3}} \right) = \lim_{X \to \infty} \left(\frac{\int (0x^{3} - 3x^{2} + 8)}{x^{3}} \right) = \lim_{X \to \infty} \left(\frac{\int (0x^{3} - 3x^{2} + 8)}{x^{3}} \right) = \lim_{X \to \infty} \left(\frac{\int (0x^{3} - 3x^{2} + 8)}{x^{3}} \right) = \lim_{X \to \infty} \left(\frac{\int (0x^{3} - 3x^{2} + 8)}{x^{3}} \right$$

$$=\lim_{X\to\infty}\left(\frac{10}{\sqrt{25}}\right)=\frac{10}{5}=2$$

$$\frac{\cos(2)}{x^{3}-\infty} \left(\frac{\frac{10x^{3}-3x^{2}+8}{-x^{3}}}{\frac{25x^{6}+x^{6}+2}{x^{6}}} \right) = \lim_{x \to -\infty} \left(\frac{\frac{-10+3\sqrt{-8}\sqrt{x^{3}}}{x^{3}}}{\frac{25x+1\sqrt{+2}\sqrt{x^{6}}}{x^{6}}} \right)$$

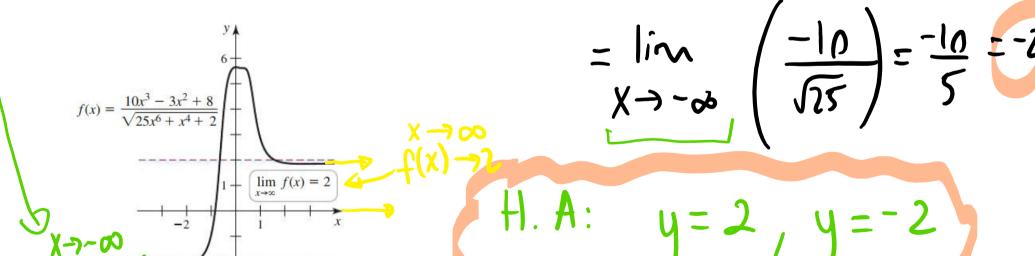
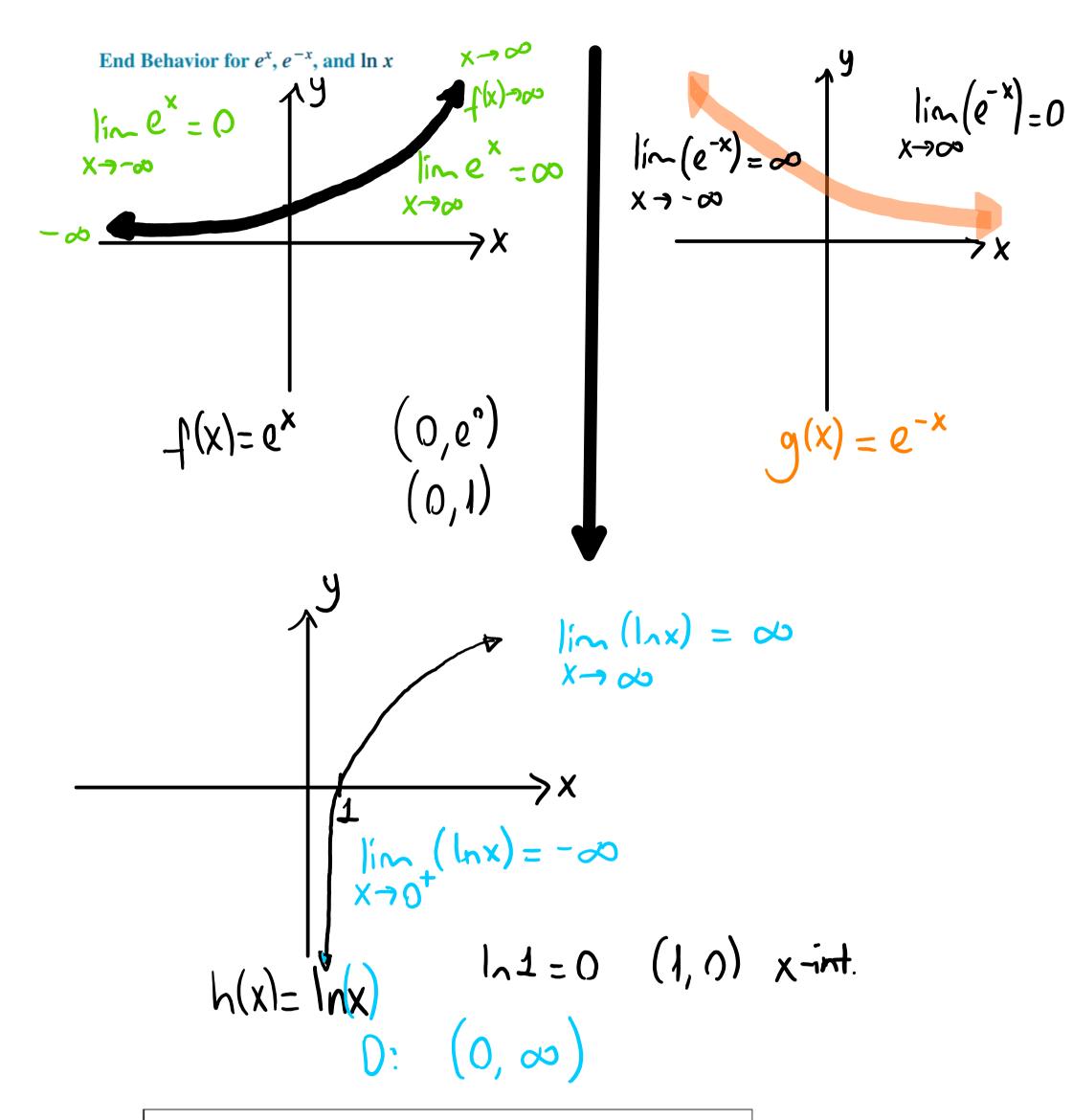


Figure 2.42



THEOREM 2.8 End Behavior of e^x , e^{-x} , and $\ln x$

The end behavior for e^x and e^{-x} on $(-\infty, \infty)$ and $\ln x$ on $(0, \infty)$ is given by the following limits:

$$\lim_{x \to \infty} e^x = \infty \qquad \text{and} \quad \lim_{x \to -\infty} e^x = 0,$$

$$\lim_{x \to \infty} e^{-x} = 0 \qquad \text{and} \quad \lim_{x \to -\infty} e^{-x} = \infty,$$

$$\lim_{x \to \infty} \ln x = -\infty \quad \text{and} \quad \lim_{x \to \infty} \ln x = \infty.$$

Dr. Tabanli's Spring 2020 Exam2 Question:

Thursday, September 17, 2020

8:11 AM

Find all horizontal asymptotes of $f(x) = \frac{8-3x}{2x+\sqrt{25x^2+x+13}}$. Write "NONE" if f has no horizontal asymptotes.

method#1

Step1) Identify the hiphest exponent in the denominator (Step2) Divide All by USE LIMITS!

X is the highest exponent in the denominator ($\frac{8-3x}{x}$)

You $\frac{8-3x}{x}$ $\frac{3x}{x}$ $\frac{3x}{x}$

$$\lim_{x\to\infty} \left(\frac{-3}{2+\sqrt{25}}\right) = \lim_{x\to\infty} \left(\frac{-3}{7}\right) = \frac{-3}{7}$$

$$X \rightarrow -\infty$$

$$(\chi < 0)$$

$$\lim_{x \to -\infty} \left(\frac{3}{2x} \right)$$

$$\lim_{X \to -\infty} \left(\frac{\frac{8-3x}{-x}}{\frac{2x}{-x} + \frac{25x^2+x+1}{x^2}} \right) = \lim_{X \to -\infty} \left(\frac{-\frac{8}{x} + 3}{\frac{x}{x^2}} \right)$$

$$=\lim_{x\to-\infty}\left(\frac{1}{2}\right)=1$$

Alternative (more Practical) Method:

Find all horizontal asymptotes of $f(x) = \frac{8-3x}{2x+\sqrt{25x^2+x+13}}$. Write "NONE" if f has no horizontal asymptotes.

Focused on factority none:

$$\int (x) = \frac{8 - 3x}{2x + \left[x^{25} + \frac{1}{x} + \frac{13}{x^{2}}\right]} = \frac{8 - 3x}{2x + \left[x\right] \cdot \sqrt{25 + \frac{1}{x} + \frac{13}{x^{2}}}}$$

$$= \frac{8 - 3x}{2x + \left[x\right] \cdot \sqrt{25 + \frac{1}{x} + \frac{13}{x^{2}}}$$

$$= \frac{8 - 3x}{2x + \left[x\right] \cdot \sqrt{25 + \frac{1}{x} + \frac{13}{x^{2}}}$$

$$= \frac{8 - 3x}{2x + \left[x\right] \cdot \sqrt{25 + \frac{1}{x} + \frac{13}{x^{2}}}$$

(av# | $A_5 \times \infty$

$$\lim_{X \to \infty} \frac{8-3x}{2x+x} = \lim_{X \to \infty} \frac{x}{2x+x} = \lim_{X \to \infty} \frac{x}{2x$$

$$-\lim_{X\to\infty}\left(\frac{-J}{2+5}\right)=\left(\frac{-J}{7}\right)$$

Cox#2 As x > -00 |x|=-x;

$$\lim_{X \to -\infty} \frac{8-3x}{2x-x} = \lim_{X \to -\infty} \frac{(\frac{1}{x}-3)}{(\frac{1}{x}-3)}$$

$$||x|| = \lim_{X \to -\infty} \frac{(\frac{1}{x}-3)}{(\frac{1}{x}-3)}$$

$$\frac{x(\frac{8}{x}-3)}{x(2-1)\frac{25+1}{x}\frac{11}{x^2}}$$

$$=\lim_{X\to-\infty}\left(\frac{-J}{2-r}\right)=\frac{-J}{-J}$$

6:22 PM

Informally, a firster of is continuous at a "
if the graph of f doesn't have a hole or a break

Definition: Continuity at a Point A function f is Co-tihuous at a If $\lim_{x\to a} f(x) = f(a)$

Continuity Checklist

In order for f to be continuous at a, the following three conditions must hold

- **1.** f(a) is defined (a is in the domain of f).
- 2. $\lim f(x)$ exists.
- **3.** $\lim f(x) = f(a)$ (the value of f equals the limit of f at a).

If f is continuous at a, then $\lim_{x\to a} f(x) = f(a)$, and direct substitution may be used to evaluate $\lim f(x)$.

Note that when f is defined on an open interval containing a (except possibly at a), we say that f has a **discontinuity** at a (or that a is a **point of discontinuity**) if f is not continuous at a.

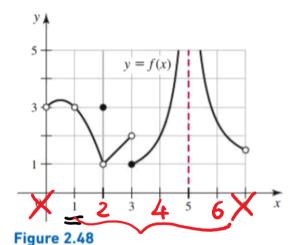
Clecklist: #1) _ [a) #2) LL=RL

#3) f(a)= (i~f(x)

EXAMPLE 1 Points of discontinuity Use the graph of f in Figure 2.48 to identify values of x on the interval (0, 7) at which f has a discontinuity. open interval

Hint: Check the open interval and state the type of discontinuities.

is undefined, failed #1



i. point of discontinuity at X=1

#1)
$$f(x)=3$$

#2) $\lim_{x\to 2^{-}} f(x)=1=\lim_{x\to 2^{+}} f(x)$

EXAMPLE 2 Continuity at a point Determine whether the following functions are continuous at a. Justify each answer using the continuity checklist.

a.
$$f(x) = \frac{3x^2 + 2x + 1}{x - 1}$$
; $a = 1$ **b.** $g(x) = \frac{3x^2 + 2x + 1}{x - 1}$; $a = 2$

b.
$$g(x) = \frac{3x^2 + 2x + 1}{x - 1}$$
; $a = 2$

c.
$$h(x) = \begin{cases} x \sin \frac{1}{x} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$$
; $a = 0$

b)
$$\#1) g(2) = \underbrace{J \cdot 2^2 + 2 \cdot 2 + 1}_{2-1} = \underbrace{J \cdot C_1 + C_1 + 1}_{1} = 17$$

#2
$$\lim_{x\to 2} g(x) = 17$$

#3
$$g(2) = \lim_{x \to 2} g(x) = 17$$

$$Sim\left(\frac{1}{x}\right). x \neq sim1$$

c)
$$h(x) = \begin{cases} x \cdot sh(\frac{1}{x}), & \text{if } x \neq 0 \\ 0, & \text{if } x = 0 \end{cases}$$

$$\alpha = 0$$

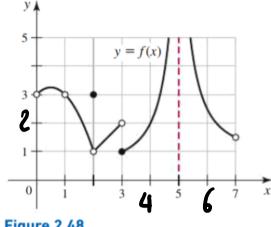
$$\frac{x \cdot -1}{x \cdot -x} < \frac{x \cdot -x}{x \cdot -x} < \frac{x$$

$$\int_{i} h(x) = 0$$

#3
$$h(x) = \lim_{x \to 0} h(x) = 0$$

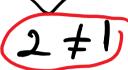
$$\phi x=3$$

@ X=3 (Jump Discontinuity)



#2
$$||x-3|| + ||x-3|| + |$$

Figure 2.48



x→3

DNE

failed #2. STOP

$$x=6=$$
) $f(6)=\lim_{x\to 6}f(x)=2.5$

@ x= 5 (Infinite Discort.)

#1 f(5) udefned

Figure 2.48

Point of discontinuity

The following theorems make it easier to test various combinations of functions for continuity at a point.

THEOREM 2.9 Continuity Rules

If f and g are continuous at a, then the following functions are also continuous at a. Assume c is a constant and n > 0 is an integer.

 $\mathbf{a.} f + g$

b. f-g

c. cf

- **d.** fg
- **e.** f/g, provided $g(a) \neq 0$
- **f.** $(f(x))^n$

THEOREM 2.10 Polynomial and Rational Functions

- **a.** A polynomial function is continuous for all x.
- **b.** A rational function (a function of the form $\frac{p}{q}$, where p and q are polynomials) is continuous for all x for which $q(x) \neq 0$.

EXAMPLE 3 Applying the continuity theorems For what values of x is the function

$$f(x) = \frac{x}{x^2 - 7x + 12}$$
 continuous?

$$f(x) = \frac{x}{(x-3)(x-4)} = 0$$

f is cont. for all x except x=3 and x=4

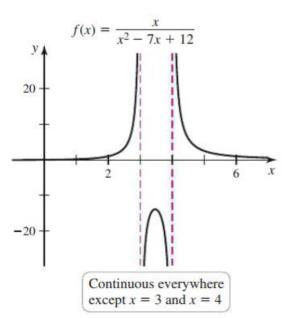


Figure 2.49

THEOREM 2.11 Continuity of Composite Functions at a Point

If g is continuous at a and f is continuous at g(a), then the composite function $f \circ g$ is continuous at a.

EXAMPLE 4 Limit of a composition Evaluate $\lim_{x\to 0} \left(\frac{x^4-2x+2}{x^6+2x^4+1}\right)^{10}$.

$$x \rightarrow 0^{-} \times \rightarrow 0^{+}$$

$$x \rightarrow 0^{-} \times \rightarrow 0^{+}$$

 $x \to 0^ x \to 0^+$ denominator will not x^6 x^4 > 0 be equal to zero!

$$\lim_{x \to 0} \left(\frac{x^{4} - 2x + 2}{x^{6} + 2x^{4} + 1} \right)^{10} = \left(\frac{0 - 0 + 2}{0 + 0 + 1} \right)^{10} = 2^{10}$$

THEOREM 2.12 Limits of Composite Functions

1. If g is continuous at a and f is continuous at g(a), then

$$\lim_{x \to a} f(g(x)) = f\Big(\lim_{x \to a} g(x)\Big).$$

2. If $\lim g(x) = L$ and f is continuous at L, then

$$\lim_{x \to a} f(g(x)) = f\Big(\lim_{x \to a} g(x)\Big).$$