5.5 Group Activity Problems - Solutions

Table 5.6 General Integration Formulas

1. $\int \cos ax \, dx = \frac{1}{a} \sin ax + C$ 3. $\int \sec^2 ax \, dx = \frac{1}{a} \tan ax + C$ 5. $\int \sec ax \tan ax \, dx = \frac{1}{a} \sec ax + C$ 7. $\int e^{ax} \, dx = \frac{1}{a} e^{ax} + C$ 9. $\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \tan^{-1} \frac{x}{a} + C$ 10. $\int \frac{dx}{\sqrt{a^2 - x^2}} = \sin^{-1} \frac{x}{a} + C, a > 0$ 11. $\int \frac{dx}{x\sqrt{x^2 - a^2}} = \frac{1}{a} \sec^{-1} \left| \frac{x}{a} \right| + C, a > 0$

17–44. Indefinite integrals Use a change of variables or Table 5.6 to evaluate the following indefinite integrals. Check your work by differentiating.

17. $\int 2x(x^2-1)^{99} dx$ **18.** $\int xe^{x^2} dx$

5.5.17 Let $u = x^2 - 1$. Then $du = 2x \, dx$. Substituting yields $\int u^{99} \, du = \frac{u^{100}}{100} + C = \frac{(x^2 - 1)^{100}}{100} + C$. **5.5.18** Let $u = x^2$. Then $du = 2x \, dx$, so $\frac{1}{2} du = x \, dx$. Substituting yields $\frac{1}{2} \int e^u \, du = \frac{1}{2} \cdot e^u + C = \frac{1}{2} \cdot e^{x^2} + C$.

45–74. Definite integrals Use a change of variables or Table 5.6 to evaluate the following definite integrals.

$$64. \quad \int_0^{\ln 4} \frac{e^x}{3 + 2e^x} \, dx$$

5.5.64 Let $u = 3 + 2e^x$, so that $du = 2e^x dx$. Substituting yields $\frac{1}{2} \int_5^{11} \frac{1}{u} du = \frac{1}{2} \ln |u| \Big|_5^{11} = \frac{\ln(11/5)}{2}$.

70.
$$\int_{-1}^{1} (x-1)(x^2-2x)^7 dx$$

5.5.70 Let $u = x^2 - 2x$. Then du = 2(x - 1) dx. Also note that when x = -1 we have u = 3 and when x = 1 we have u = -1. Substituting yields $\frac{1}{2} \int_{3}^{-1} u^7 du = \frac{1}{16} (u^8) \Big|_{3}^{-1} = \frac{1}{16} (1 - 3^8) = -\frac{6560}{16} = -410.$

95. Explain why or why not Determine whether the following statements are true and give an explanation or counterexample.

 $\mathbf{c.} \quad \int \sin 2x \, dx = 2 \int \sin x \, dx.$

d.
$$\int (x^2 + 1)^9 dx = \frac{(x^2 + 1)^{10}}{10} + C.$$

- c. False. If this were true, then $\sin 2x$ and $2\sin x$ would have to differ by a constant, which they do not. In fact, $\sin 2x = 2\sin x \cos x$.
- d. False. The derivative of the right hand side is $(x^2 + 1)^9 \cdot 2x$ which is not the integrand on the left hand side.

96–98. Areas of regions Find the area of the following regions.

96. The region bounded by the graph of $f(x) = \frac{x}{\sqrt{x^2 - 9}}$ and the x-axis between x = 4 and x = 5

5.5.96 $A(x) = \int_{4}^{5} \frac{x}{\sqrt{x^2 - 9}} dx$. Let $u = x^2 - 9$, so that du = 2x dx. Also, when x = 4 we have u = 7 and when x = 5 we have u = 16. Substituting yields $\frac{1}{2} \int_{7}^{16} u^{-1/2} du = \sqrt{u} \Big|_{7}^{16} = 4 - \sqrt{7}$.