Chapter 5.3 Fundamental Theorem of Calculus

Thursday, December 3, 2020 12:12 AM

EXAMPLE 5 Derivatives of integrals Use Part 1 of the Fundamental Theorem to sim-

plify the following expressions.
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THEOREM 5.3 (PART 1) Fundamental Theorem of Calculus
If f is continuous on [a, b], then the area function

A(x) = L‘f(r) dt, for a=x=bh,

is continuous on [a, b] and differentiable on (a, b). The area function satisfies
A’'(x) = f(x). Equivalently,

A'(e) = <50 de = f(x),

dx Ja

which means that the area function of f is an antiderivative of f on [a, b].
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Warm Up - Evaluate the definite integral.

a) 2w +1
b) 1.57 -2

c) 1.5n-1
2cosx + 2 ifl-;::-ﬂ-f'} d) 27 -1

y sinx + 1 ifx < 7/2
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Objective:

Given just about any differentiable function, with enough know-how and persistence, you
can compute its derivative. But the same cannot be said of antiderivatives. Many func-
tions, even relatively simple ones, do not have antiderivatives that can be expressed 1n
terms of familiar functions. Examples are sin x°, (sin x)/x, and x*. The immediate goal
of this section is to enlarge the family of functions for which we can find antiderivatives.

s O

Introductory Example: "u Substitution method", Backward Thinking to Derivatives, Inside/Outside Functions
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Table 5.6 General Integration Formulas

1 1
1. Icns axdx = —sinax + C 2. Isin axdx = ——cosax + C
&l il
, 1 . 1
3. J’SEC“ axdx = —tanax + C 4. Icsc* axdx = ——cotax + C
a a
| |
S. J’se:c axtan ax dx = ; secax + C 6. Icsc ax cotax = —-Ecsc ax + C
| | .
T*Je‘“drﬁ—f‘“+(f' 8. jb‘d_xr—b‘+{:‘,b:=-0,b e |
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THEOREM 5.6 Substitution Rule for Indefinite Integrals
Let u = g(x), where g is differentiable on an interval, and let f be continuous on
the corresponding range of g. On that interval,

[ (e’ @) e = [ fu)

PROCEDURE Substitution Rule (Change of Variables)

1. Given an indefinite integral involving a composite function f(g(x)), identify
an inner function u = g(x) such that a constant multiple of g’(x) appears in
the integrand.

2. Substitute # = g(x) and du = g’(x) dx in the integral.
3. Evaluate the new indefinite integral with respect to u.
4. Write the result in terms of x using u = g(x).

Disclaimer: Not all integrals yield to the Substitution Rule.

EXAMPLE 1 Perfect substitutions Use the Substitution Rule to find the following in-

definite integrals. Check your work by :.Ef ferentiating.
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EXAMPLE 2 Introducing a constant Find the following indefinite integrals. =
a. ‘I‘I‘i (x° + 6)” dx b. (LUH X sin x dx 7
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Definite Integrals

The Substitution Rule is also used for definite integrals; in fact, there are two ways to proceed.

* You may use the Substitution Rule to find an antiderivative F and then use the Funda-
mental Theorem to evaluate F(b) — F(a).

* Alternatively, once you have changed variables from x to u, you also may change the
limits of integration and complete the integration with respect to u. Specifically, if
u = g(x), the lower limit x = a is replaced with u = g(a) and the upper limit x = b is
replaced with u = g(b).

The second option tends to be more efficient, and we use it whenever possible. This ap-
proach is summarized in the following theorem, which is then applied to several definite
integrals.

THEOREM 5.7 Substitution Rule for Definite Integrals
Let u = g(x), where g’ is continuous on [a, b, and let f be continuous on the
range of g. Then

b g(b)
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Use Option 1.
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Option 1: Put it in terms of x, keep the intervals of
integration wrt x

Option 2: Keep u, change the intervals of integration wrt u
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EXAMPLE 5 Definite integrals Evaluate the following integrals. //L
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You try it! Evaluate the definite integral. O\g-h\or\ ok
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You try it! Dr. T's Fall 2019 Recitation Quiz Question.

Find the area of the region under the the graph of y = % above the t—axis on the

interval of [4, 25|. Simplify your final answer as much as possible.
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