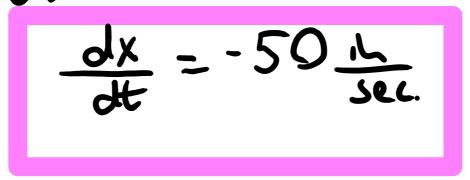


9) path of the particle is modeled by:

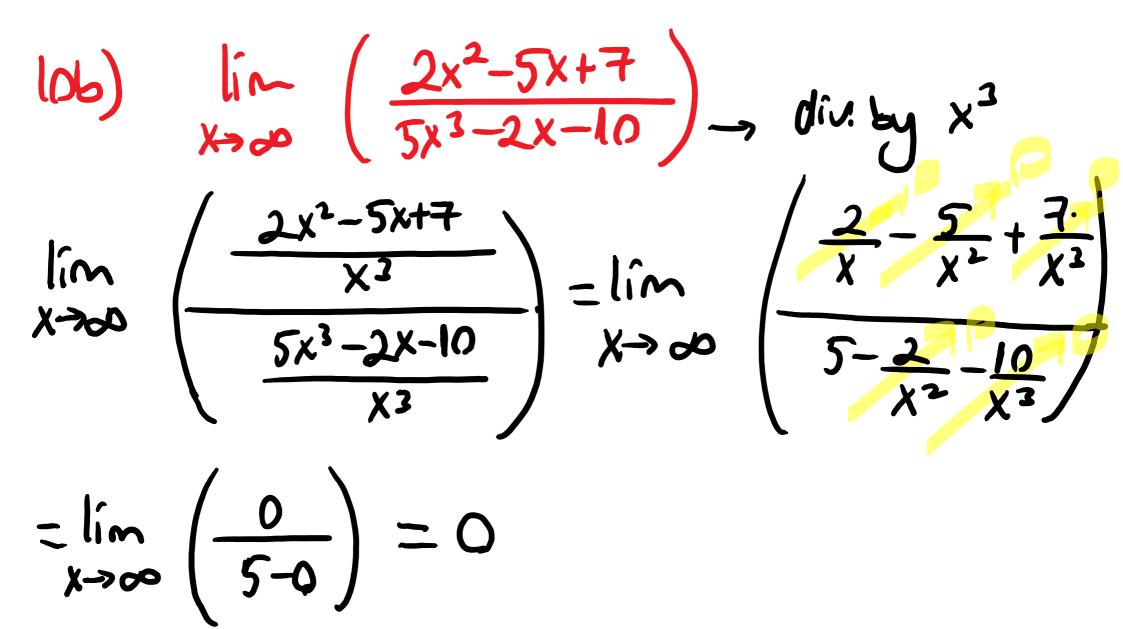
$$x^{2} + xy + 2y^{2} = 16$$

y-coordinate is decreasing at 5 in/sec.
when the particle passes $(2, -3)$
At what rate is its x-coordinate chapity?
Given: $x^{2} + xy + 2y^{2} = 16$
 $\frac{dy}{dt} = -5 \frac{1}{16}$ $\frac{dt}{dt} = 2$
 $2x \cdot \frac{dx}{dt} + \frac{dx}{dt} + x \cdot \frac{dy}{dt} + \frac{dy}{dt} \cdot \frac{dy}{dt} = -2$
 $2 \cdot 2 \cdot \frac{dx}{dt} + \frac{dx}{dt} \cdot (-3) + 2 \cdot (-5) + 4 \cdot (-3) \cdot (-5) = 0$
 $\frac{dx}{dt} - 10 + 60 = 0$



Q10)
$$p(x) = 96 - 4x - x^{2}$$

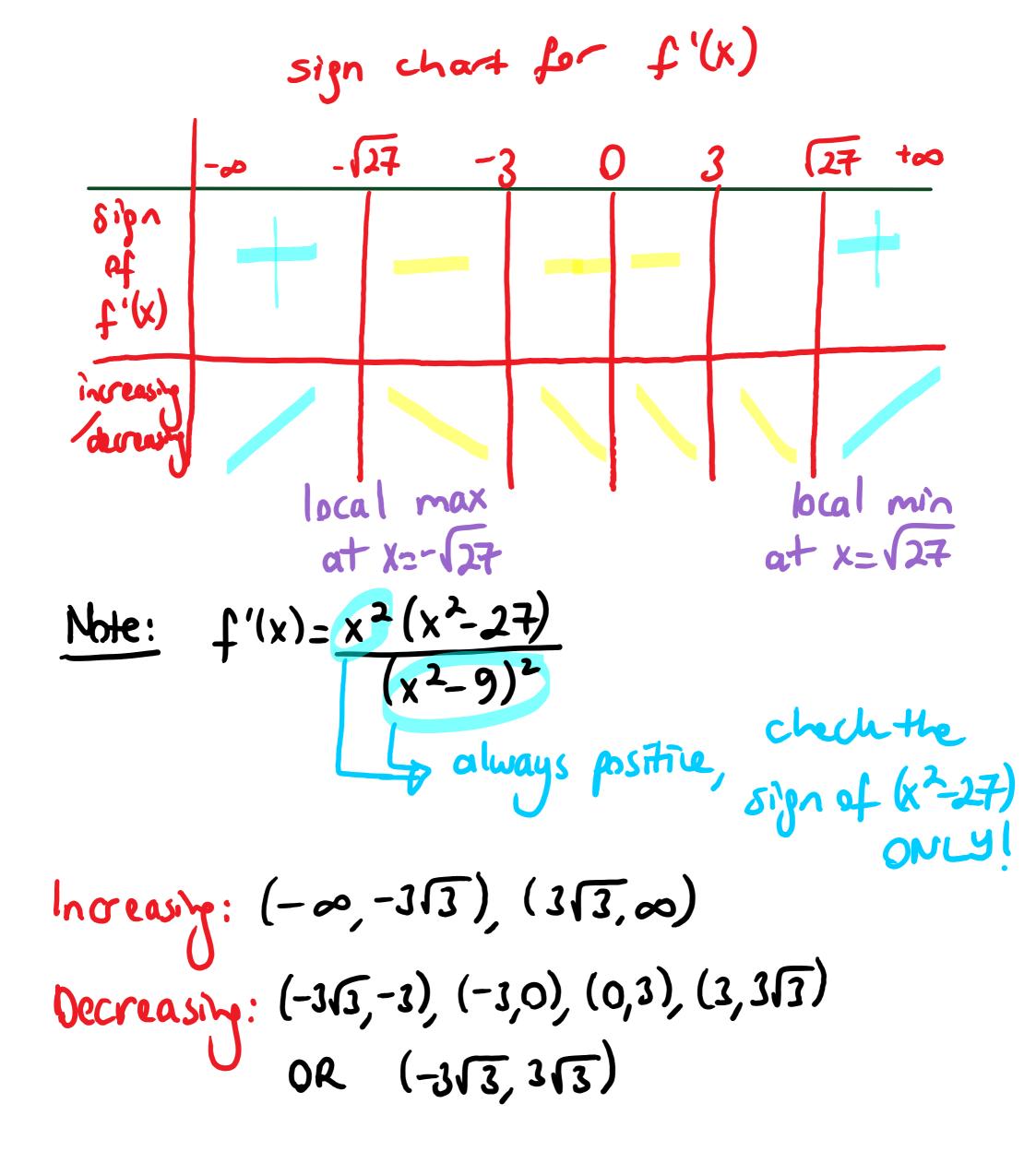
Use maginal analysis to estimate $R'(x)$ (mR)
derived from producing the 5th wit:
 $R(x) = p(x) \cdot x = 96x - 4x^{2} - x^{3}$
 $R'(x) = 96 - 8x - 3x^{2}$
 $R'(4) = \frac{16}{16}$



Q11) find the eq. of the normal line to

$$3x^2 - 10xy + 7y^2 = 3$$
 at $P(5, 2)$
Implicitly differentiate the equation
with respect to x to obtain:
 $6x - 10x \cdot \frac{dy}{dx} = 10 \cdot y + 14y \cdot \frac{dy}{dx} = 0$
Substribute $P(5,2)$ into the equation:
 $6 \cdot 5 - 10 \cdot 5 \cdot \frac{dy}{dx} = 19 \cdot 2 + 14 \cdot 2 \cdot \frac{dy}{dx} = 0$
 $30 - 50 \cdot \frac{dy}{dx} = 20 + 28 \frac{dy}{dx} = 0$
 $10 - 22 \cdot \frac{dy}{dx} = 0 \Rightarrow \frac{dy}{dx} = \frac{10}{22} = \frac{5}{11}$
Myan = $\frac{5}{11}$, mnormal = $-\frac{11}{5}$
Equation of the line normal to curve at (5,2):
 $y - 2 = -\frac{11}{5} \times +13$
 $0R$ $y = -\frac{11}{5} \times +13$
 $0R$ $11x + 5y - 65 = 0$

Q12)
$$f(x) = \frac{x^3}{x^2 - 9}$$
, $f'(x) = \frac{x^2(x^2 - 27)}{(x^2 - 9)^2}$, $f''(x) = \frac{18x(x+27)}{(x^2 - 9)^3}$
Domain of $f: (-\infty, -3)$, $(-3, 3)$, $(3, \infty)$
 $x^2 - 9 \neq 0 \Rightarrow x \neq \mp 3$
Verfical Asymptote: $f(x)$ is undefined at $x = \mp 3$,
Direct substitution of $x = \mp 3$ in $f(x)$ gives:
"non zero #", which indicates that both one
sided limits are infinite.
Holizontal Asymptote: NONE
 $\lim_{x \to -\infty} f(x) = -\infty$, $\lim_{x \to -\infty} f(x) = -\infty$
Increasing /Decreasing:
U find first-order critical numbers of
 $f(x)$ by $f'(x) = 0$
 $f'(x) = 0 = \frac{x^2(x^2 - 27)}{(x^2 - 9)^2} \Rightarrow x^2 = 0$ or $x^2 - 27 = 0$
 $x = \mp 3\sqrt{3}$
when constructing the sign charts, also include
the x-coordinates of V.A:



Concare Up/Down: Second-order critical numbers for f(x): f''(x) = 0 $f''(x) = \frac{18x(x^2+27)}{18x(x^2+27)} = 0 \implies 18x = 0 \text{ or } x^2+27=0$ $(x^2-9)^3$ None X-0 when constructing the sign charts, also include the x-coordinates of V.A: sign chart for f"(x) 3 \bigcirc Vdig

