Graphing1

Friday, November 20, 2020 2:02 PM

Consider the function f and its derivatives below.

$$f(x) = \frac{2x^2 - 3x}{x - 2}, f'(x) = \frac{2(x - 3)(x - 1)}{(x - 2)^2}, f''(x) = \frac{4}{(x - 2)^3}$$

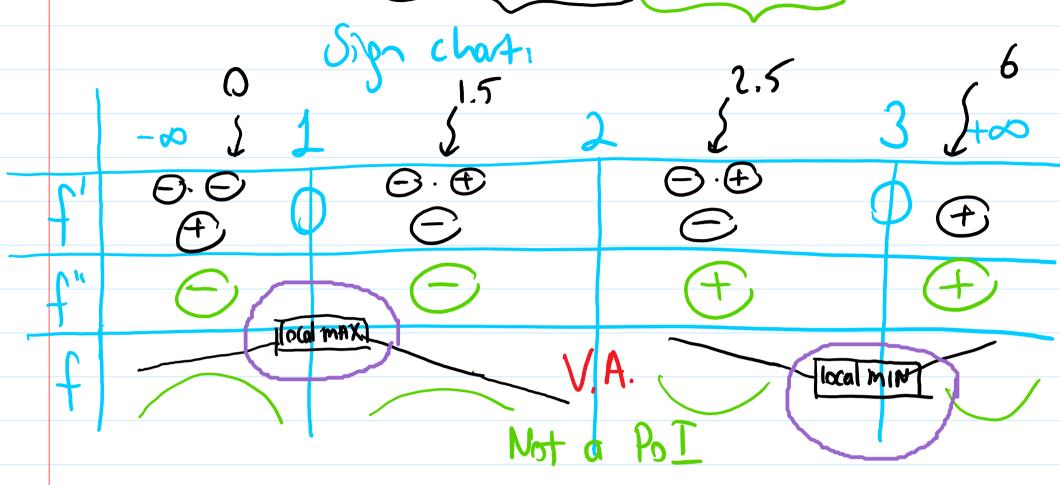
$$\lim_{X\to 2^{-}} \left(\frac{2x^2 - 3x}{x - 2} \right) = \frac{2}{0} = -\infty$$

$$\lim_{X\to 2^+} \left(\frac{2x^2-3x}{x-2} \right) \stackrel{\text{osp}}{=} \frac{2}{0^+} = +\infty$$

H.A.
$$X \rightarrow \pm \infty$$
 $y \rightarrow ?$

$$\lim_{X \rightarrow \infty} \left(\frac{2x^2 - 3x}{x - 2} \right) = \frac{\infty}{\infty} \Rightarrow \lim_{X \rightarrow \infty} \left(\frac{4x - 3}{4} \right) = \infty$$

$$\lim_{X\to -\infty} \left(\frac{2x^2 - 3x}{x - 2} \right) \stackrel{OSP}{=} \frac{\infty}{-\infty} = \lim_{X\to -\infty} \left(\frac{4x - 3}{1} \right) = -\infty$$


No H.A.

Mercepts:

$$X-int; y=0 \Rightarrow 0 = \frac{2x^2-3x}{x-2} \Rightarrow x(2x-1)=0$$

 $x=0, x=\frac{3}{2}$
 $(0,0), (\frac{1}{2},0)$
 $y=0 \Rightarrow (0,0), (\frac{1}{2},0)$

Consider the function f and its derivatives below.

$$f(x) = \frac{2x^2 - 3x}{x - 2}, f'(x) = \frac{2(x - 3)(x - 1)}{(x - 2)^2}, f''(x) = \frac{4}{(x - 2)^3}$$

f is increasing on
$$(-\infty,1)$$
, $(3,\infty)$
f is decreasing on $(1,2)$, $(2,3)$
f is concase up on $(2,\infty)$
f is concase down on $(-\infty,2)$
Local max at x=1, local min at x=3
No PoI, $x=2$ V.A.