Agenda: Review of Algebra \& Precalculus

State the domain of each function.
Tall 219 midterm \#1 Q
State the domain of $f(x)=\frac{5 x-10}{x+4}>0$ in interval rotation.
Recall: $\left(\begin{array}{c}\text { Domain, Rage }) \Rightarrow(x, y)\end{array}\right.$

Find zens of sum., denom. $\begin{aligned} & \text { construct a sign } 10 \text { chart } \\ & \text { test } p-10\end{aligned}$

$$
\begin{gathered}
5 x-10=0 \\
x=2 \\
f(x)=\frac{5 x-10}{x+4}
\end{gathered}
$$

test $P$.

Optimization

$$
\begin{aligned}
& f(-10)=\frac{5(-10)-10}{-10+4} \rightarrow \frac{\Theta}{\Theta} \rightarrow \Theta \\
& f(0)=\frac{-10}{4}<0 \rightarrow \Theta
\end{aligned}
$$ in Call.

Drain of $f(x)$ is $\underbrace{(-\infty,-4),(2, \infty)}_{\text {interval station }}$

Fall 2020 - Midterm \#1
5. The graph of a function $y=g(x)$ is given below.


Find the domain of $g(x)$. Write your answer in interval notation.



D is excluded, (open circle) 5 is included [closed circle]

- $\rightarrow$ include

Fall 2020 - Midterm \#1
8. The graph of a function $y=g(x)$ is given below.


Find the range of $g(x)$. Write your answer in interval notation.
rage is:
$() \quad$,0 exclude
$[$,$] - include$
State the domain of $2 x^{2}-5 x \leqslant 3$ in interval notation.
A) $(-1 / 2,3)$
B) $(1 / 2,3)$
c) $[-1 / 2,3]$
D) Noe
$\left.\begin{array}{rl}2 x^{2}-5 x \leqslant 3 \\ 0\end{array} \Rightarrow \begin{array}{l}2 x^{2}-5 x-3 \\ 2 x^{2}-5 x-3\end{array}\right\} 0$ temp. eq.
$\qquad$

$$
\underbrace{g(g(4))}_{\text {always stat from inside! }}
$$

$$
\begin{aligned}
g(u)=3 \Rightarrow & g(g(4)) \\
& g(3)=2
\end{aligned}
$$

Find $g(g(4))$.
Difference Quotient: $\frac{f(x+h)-f(x)}{h}$
(Limits, Derovalies)
Simplify the difference quotient for $f(x)=\sqrt{x+2}$

$$
\left.\begin{array}{l}
f(x)=\sqrt{x+2} \\
f(x+h)=\sqrt{x+h+2}
\end{array}\right\} \frac{\sqrt{x+h+2}-\sqrt{x+2}}{h} \cdot \frac{(\sqrt{x+h+2}+\sqrt{x+2})}{(\sqrt{x+h+2}+\sqrt{x+2})}
$$

Factoring Diff. of Squares: $(a-b)(a+b)=a^{2}-b^{2}$

$$
\begin{aligned}
& \frac{(\sqrt{x+h+2})^{2}-(\sqrt{x+2})^{2}}{h(\sqrt{x+h+2}+\sqrt{x+2})}=\frac{x+h+2-(x+2)}{h(\sqrt{x+h+2}+\sqrt{x+2})}=\frac{h}{h(\sqrt{x+h+2}+\sqrt{x+2})} \\
& f(x)=x)+\sqrt{2}=\frac{1}{f(x)=\sqrt{2-x}} \\
& f(x+h)=x+h)+\sqrt{2} \sqrt{x+h+2}+\sqrt{x+2} \quad f(x+h)=\sqrt{2-(x+h)}
\end{aligned}
$$

Simplify the difference quotient $\frac{f^{\prime}(x+h)-f(x)}{h}$ for $f(x)=\frac{2}{x}$
A) $\frac{3}{x(x+h)}$
B) $\frac{2}{x(x+h)}$
C) $\frac{-2}{x(x+h)}$
D) Noe

$$
\begin{aligned}
& \left.\begin{array}{l}
f(x+h)=\frac{2}{x+h} \\
f(x)=\frac{2}{x}
\end{array}\right\} \frac{\frac{2}{x+h(x)}-\frac{2}{x(x+h)}}{h}=\frac{\frac{2 x}{x(x+h)}-\frac{2(x+h)}{x(x+h)}}{h} \\
& \frac{\frac{2 x-2(x+h)}{x(x+h)}}{h}=\frac{\frac{-2 h}{x(x+h)}}{h}=\frac{-2}{x(x+h)}
\end{aligned}
$$

c) $\frac{-2}{x(x+h)}$

Let $g(x)=3 e^{x}-7$

$$
h(x)=-4+\sin (x)
$$

Recall: $e^{0}=1, \quad \sin 0=0$
Evaluate $g(0), h(0)$
Are they equal. (Yes $/ N_{n}$ )
9. True or false? "For the function $f(x)$ below, $\lim _{x \rightarrow 0} f(x)$ exists."
$f(-2)=$ ?

$$
f(x)= \begin{cases}3 e^{x}-7 & , \quad x<0 \\ -4+\sin (x) & , \quad x \geq 0\end{cases}
$$

Justify your response.

$$
\begin{aligned}
& f(-2)=3 \cdot e^{-2}-7=\frac{3}{e^{2}}-7 \\
& (-2<0) \\
& f(0)=-4+\sin 0=-4 \\
& (0=0)
\end{aligned}
$$



Sole the inequality: $\mid \underset{\substack{-10}}{|\widetilde{3}-4|}>8$

Linear Equations and Slopes


Logarithmic (and Exponential) Functions

$e^{0}=1 \quad(0,1)$


Review: properties of In

1) $\ln (a b)=\ln a+\ln b$
2) $\ln \frac{a}{b}=\ln a-\ln b$
3) $\ln a^{k}=k \ln a$
4) $\ln e=1$
5) $\ln 1=0$

D: $(0, \infty)$
E.g: Solve exponential eq. Express the solution set in terms of natural logs.

$$
e^{2 x-1}=7
$$

A) $\ln 4$
B) $\frac{\ln 8}{2}$
C) $\frac{\ln (7)+1}{2}$
D) $\frac{\ln (7)-1}{2}$ E) Ne

$$
\begin{aligned}
e^{2 x-1} & =7 \\
\ln e^{2 x-1} & =\ln 7 \\
(2 x-1) \cdot \ln e & =\ln 7 \\
2 x-1^{1} & =\ln 7 \\
2 x & =\ln (7)+1 \\
x & =\frac{\ln (7)+1}{2}
\end{aligned}
$$

