Q: Did you review the midterm1-part2 notes sent on Friday?

Two Special Limits
Our principal goal is to determine derivative formulas for $\sin x$ and $\cos x$. To do this, we use two special limits.

THEOREM 3.10 Trigonometric Limits

$$
\lim _{x \rightarrow 0} \frac{\sin (x)}{(x)}=1 \quad \lim _{x \rightarrow 0} \frac{\cos x-1}{x}=0
$$

Evaluate the following limit. Hint: Use the Special trigonometric limits as seen above.

$$
\begin{aligned}
& =1 \cdot \frac{1}{2}-\frac{1}{2}
\end{aligned}
$$

Finding vertical asymptotes Find all vertical asymptotes $x=a$ of the following functions.
For each value of a, determine $\lim _{x \rightarrow a^{+}} f(x), \lim _{x \rightarrow a^{-}} f(x)$, and $\lim _{x \rightarrow a} f(x)$.
$-7-2$
$x \neq 2$
($f(2)$ is undefined, We at $x=2$)
simplified

$$
f(x)=\frac{x-7}{x-3}
$$

$$
x=2 \text { is } N T \text { a V.A. }
$$

In determine $V A: \quad x-3=0 \Rightarrow x=3$

$$
\lim _{x \rightarrow 3^{-}}(\frac{\underbrace{x-7}_{\text {neg. }}}{\frac{x-3}{x-7}})_{\text {app. } 0}^{\text {neg. \# app. } 0}=+\infty
$$

$$
\left.\lim _{x \rightarrow 3}\left(\frac{x-7}{x-3}\right)\right\} \quad \begin{aligned}
\lim _{x \rightarrow 3^{-}}\left(\frac{x-7}{x-3}\right) & \neq \lim _{x \rightarrow 3^{+}}\left(\frac{x-7}{x-3}\right) \\
\infty & \neq-\infty
\end{aligned}
$$

DNE \therefore sign of the infinity matters!

EXAMPLE 6 Limits of trigonometric functions Analyze the following limits.

$$
\text { a.) } \lim _{\theta \rightarrow 0^{+}}\left(\frac{\cos \theta}{\sin \theta}\right)=\frac{\cos 0}{\sin 0^{+}}=\frac{1}{\text { "pop"". "1. "poss. non-2ero" } \# 1} \begin{aligned}
& \text { app. } 0
\end{aligned}=\infty
$$

$$
\text { b.) } \lim _{\theta \rightarrow 0^{-}}\left(\frac{\cos \theta}{\sin \theta}\right)^{\text {"poss" "1 }}=\frac{\cos 0^{11}}{\sin 0^{-}}=\frac{1}{\text { neg. }{ }_{\text {app. } 0}^{\#} 0}
$$

$$
\begin{aligned}
& \text { a. } \lim _{\theta \rightarrow 0^{+}} \cot \theta \quad \text { b. } \lim _{\theta \rightarrow 0^{-}} \cot \theta \\
& \text { Recall: } \cot \theta=\frac{\cos \theta}{\sin \theta} \\
& \text { Unit Circle }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{c}
(x, y) \rightarrow(\cos \theta, \sin \theta) \\
\sin \theta=0
\end{array}
\end{aligned}
$$

Limits at infinity occur when the independent variable becomes large in magnitude (such as $x \rightarrow F+\infty$) Limits at infinity determine the END PEHAVIDR of a function.

DEFINITION Limits at Infinity and Horizontal Asymptotes
If $f(x)$ becomes arbitrarily close to a finite number L for all sufficiently large and positive x, then we write

$$
\lim _{x \rightarrow \infty} f(x)=L
$$

We say the limit of $f(x)$ as x approaches infinity is L. In this case, the line $y=L$ is a horizontal asymptote of f (Figure 2.31). The limit at negative infinity, $\lim _{x \rightarrow-\infty} f(x)=M$, is defined analogously. When this limit exists, $y=M$ is a horizontal asymptote.

Graph of $f(x)$

EXAMPLE 1 Limits at infinity Evaluate the following limits.
a. $\lim _{x \rightarrow-\infty}\left(2+\frac{10}{x^{2}}\right)$
b. $\lim _{x \rightarrow \infty}\left(5+\frac{\sin x}{\sqrt{x}}\right)$
a. $\lim _{x \rightarrow-\infty}\left(2+\frac{10}{x^{2}}\right)=\lim _{x \rightarrow-\infty} 2+\lim _{x \rightarrow-\infty} \underbrace{\left(\frac{10}{\left(\frac{10}{x^{2}}\right)}\right.} \begin{array}{r}\text { DST })^{2} \\ \text { poss. very large \# }\end{array}$

$$
=2+0=2
$$

DEFINITION Infinite Limits at Infinity
If $f(x)$ becomes arbitrarily large as x becomes arbitrarily large, then we write

$$
\lim _{x \rightarrow \infty} f(x)=\infty
$$

The limits $\lim _{x \rightarrow \infty} f(x)=-\infty, \lim _{x \rightarrow-\infty} f(x)=\infty$, and $\lim _{x \rightarrow-\infty} f(x)=-\infty$ are defined similarly.

THEOREM 2.6 Limits at Infinity of Powers and Polynomials
Let n be a positive integer and let p be the polynomial

$$
p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}, \text { where } a_{n} \neq 0
$$

1) $\lim _{x \rightarrow \pm \infty} x^{n}=\infty$ when n is even.
(2) $\lim _{x \rightarrow \infty} x^{n}=\infty$ and $\lim _{x \rightarrow-\infty} x^{n}=-\infty$ when n is odd. $\rightarrow \mathbf{1 1}^{\prime \prime}$
3. $\lim _{x \rightarrow \pm \infty} \frac{1}{x^{n}}=\lim _{x \rightarrow \pm \infty} x^{-n}=0$. II $\frac{1}{\text { Very big H }}$
4. $\lim _{x \rightarrow \pm \infty} p(x)=\lim _{x \rightarrow \pm \infty} a_{n} x^{n}= \pm \infty$, depending on the degree of the polynomil and the sign of the leading coefficient a_{n}.

Limits of a polynomial is determined by the highest power of \mathbf{x}.
1)
$\lim _{x \rightarrow \mp \infty}(x)=x^{2} \xlongequal{2-\operatorname{len}}=\infty$
(2)

$$
x \rightarrow \infty ; f(x) \rightarrow \infty
$$

$$
f(x)=x^{3 \rightarrow o d d}
$$

EXAMPLE 2 Limits at infinity Determine the limits as $x \rightarrow \pm \infty$ of the following functions.
a. $p(x)=3 x^{4}-6 x^{2}+x-10$
b. $q(x)=-2 x^{3}+3 x^{2}-12$
a. $\lim _{x \rightarrow \infty}\left(3 x^{4}-6 x^{2}+x-10\right)=\infty$

$$
\lim _{x \rightarrow-\infty}\left(3 x^{4}-6 x^{2}+x-10\right)=\lim _{x \rightarrow-\infty}\left(\underset{\substack{3 x^{4} \\=}}{=}\right)^{+}+\infty
$$

EXAMPLE 2 Limits at infinity Determine the limits as $x \rightarrow \pm \infty$ of the following functions.
a. $p(x)=3 x^{4}-6 x^{2}+x-10$
b. $q(x)=-2 x^{3}+3 x^{2}-12$

$$
\text { b. } \begin{aligned}
& \lim _{x \rightarrow \infty}\left(-2 x^{3}+3 x^{2}-12\right)=\lim _{x \rightarrow \infty}\binom{-2 x^{3}}{\left(\frac{n y}{} x_{\rightarrow \infty}\right.}=\Theta \infty \\
& \lim _{x \rightarrow-\infty}\left(-2 x^{3}+3 x^{2}-12\right)=\lim _{x \rightarrow-\infty}\binom{+2 x^{3}}{=\rightarrow+\infty}=+\infty
\end{aligned}
$$

Recall: leading coffficest test from precalk!
rises to the left

falls to the right

An effective strategy for determining the limits of rational functions at infinity is to divide both the numerator and denominator by x^{n}, where n is the highest degree of the polynomial in the denominator.

End Behavior
The behavior of polynomials as $x \rightarrow \pm \infty$ is an example of what is often called end behavior. Having treated polynomials, we now turn to the end behavior of rational, algebraic, and transcendental functions.

$$
\binom{x \rightarrow}{+\infty}
$$

EXAMPLE 3 End behavior of rational functions Use limits at infinity to determine the end behavior of the following rational functions.
a. $f(x)=\frac{3 x+2}{x^{2}-1}$
b. $g(x)=\frac{40 x^{4}+4 x^{2}-1}{10 x^{4}+8 x^{2}+1}$
c. $h(x)=\frac{x^{3}-2 x+1}{2 x+4}$
a. $\lim _{x \rightarrow \infty}\left(\frac{3 x+2}{x^{2}-1}\right)$ 1) Deft. the highest degree ${ }^{2}$ in the desmanatr: x^{2}

End Behavior
The behavior of polynomials as $x \rightarrow \pm \infty$ is an example of what is often called end behavior. Having treated polynomials, we now turn to the end behavior of rational, algebraic, and transcendental functions.

EXAMPLE 3 End behavior of rational functions Use limits at infinity to determine the end behavior of the following rational functions.
a. $f(x)=\frac{3 x+2}{x^{2}-1}$
b. $g(x)=\frac{40 x^{4}+4 x^{2}-1}{10 x^{4}+8 x^{2}+1}$
c. $h(x)=\frac{x^{3}-2 x+1}{2 x+4}$

 div. All by

