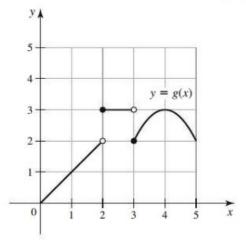

2.1-2.2 Group Activity Problems

15. Use the graph of *f* in the figure to find the following values or state that they do not exist. If a limit does not exist, explain why.



18. One-sided and two-sided limits Use the graph of *g* in the figure to find the following values or state that they do not exist. If a limit does not exist, explain why.

a. $g(2)$	b. $\lim_{x \to 2^-} g(x)$	c. $\lim_{x \to 2^+} g(x)$
d. $\lim_{x \to 2} g(x)$	e. g(3)	f. $\lim_{x \to 3^-} g(x)$

g. $\lim_{x \to 3^+} g(x)$ **h.** g(4) **i.** $\lim_{x \to 4} g(x)$

Practice Exercises

19–26. Evaluating limits graphically Sketch a graph of f and use it to make a conjecture about the values of f(a), $\lim_{x \to a^{-}} f(x)$, $\lim_{x \to a^{+}} f(x)$, and $\lim_{x \to a} f(x)$ or state that they do not exist.

19.
$$f(x) = \begin{cases} x^2 + 1 & \text{if } x \le -1 \\ 3 & \text{if } x > -1 \end{cases}; a = -1$$

20.
$$f(x) = \begin{cases} 3 - x & \text{if } x < 2\\ x - 1 & \text{if } x > 2 \end{cases}; a = 2$$