
## **2.4 Group Activity Problems**



- **4.** Consider the function F(x) = f(x)/g(x) with g(a) = 0. Does F necessarily have a vertical asymptote at x = a? Explain your reasoning.
- **8.** The graph of g in the figure has vertical asymptotes at x = 2 and x = 4. Analyze the following limits.
  - $\mathbf{a.} \ \lim_{x \to 2^{-}} g(x)$
- **b.**  $\lim_{x \to 2^+} g(x)$
- $\mathbf{c.} \lim_{x \to 2} g(x)$

- $\mathbf{d.} \lim_{x \to 4^{-}} g(x)$
- $e. \lim_{x \to 4^+} g(x)$
- $\mathbf{f.} \lim_{x \to 4} g(x)$



**15.** Verify that the function  $f(x) = \frac{x^2 - 4x + 3}{x^2 - 3x + 2}$  is undefined at x = 1 and at x = 2. Does the graph of f have vertical asymptotes at both these values of x? Explain.

## Determine the limits analytically.

**22. a.** 
$$\lim_{x \to 3^+} \frac{2}{(x-3)^3}$$
 **b.**  $\lim_{x \to 3^-} \frac{2}{(x-3)^3}$  **c.**  $\lim_{x \to 3} \frac{2}{(x-3)^3}$ 

**28.** a. 
$$\lim_{t \to -2^+} \frac{t^3 - 5t^2 + 6t}{t^4 - 4t^2}$$
 b.  $\lim_{t \to -2^-} \frac{t^3 - 5t^2 + 6t}{t^4 - 4t^2}$ 

**c.** 
$$\lim_{t \to -2} \frac{t^3 - 5t^2 + 6t}{t^4 - 4t^2}$$
 **d.**  $\lim_{t \to 2} \frac{t^3 - 5t^2 + 6t}{t^4 - 4t^2}$ 

**30.** a. 
$$\lim_{x \to 1^+} \frac{x-3}{\sqrt{x^2-5x+4}}$$
 b.  $\lim_{x \to 1^-} \frac{x-3}{\sqrt{x^2-5x+4}}$ 

**b.** 
$$\lim_{x \to 1^{-}} \frac{x-3}{\sqrt{x^2-5x+4}}$$

c. 
$$\lim_{x \to 1} \frac{x-3}{\sqrt{x^2-5x+4}}$$

**Finding vertical asymptotes** Find all vertical asymptotes x = a of the following functions. For each value of a, determine  $\lim_{x \to a^+} f(x)$ ,  $\lim_{x \to a^-} f(x)$ , and  $\lim_{x \to a} f(x)$ .

$$f(x) = \frac{x+1}{x^3 - 4x^2 + 4x}$$