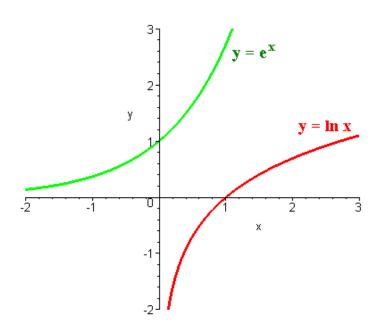
Precalculus Review - Group Activity Problems Solutions

SUCCESS TEAMWORK VISION VISION

1

1.3 Exponential, Logarithmic Functions Review



Review: properties of In

1)
$$\ln(ab) = \ln a + \ln b$$

$$2) \quad \ln\frac{a}{b} = \ln a - \ln b$$

3)
$$\ln a^k = k \ln a$$

4)
$$\ln e = 1$$

5)
$$\ln 1 = 0$$

19. Evaluate each expression without a calculator.

a. $\log_{10} 1000$ **b.** $\log_2 16$ **c.** $\log_{10} 0.01$ **d.** $\ln e^3$ **e.** $\ln \sqrt{e}$

1.3.19

a. Because $10^3 = 1000$, $\log_{10} 1000 = 3$.

b. Because $2^4 = 16$, $\log_2 16 = 4$.

c. Because $10^{-2} = \frac{1}{100} = 0.01$, $\log_{10} 0.01 = -2$.

d. Because e^x and $\ln x$ are inverses, $\ln e^3 = 3$.

e. Because e^x and $\ln x$ are inverses, $\ln \sqrt{e} = \ln e^{1/2} = \frac{1}{2}$.

45–50. Properties of logarithms Assume $\log_b x = 0.36$, $\log_b y = 0.56$, and $\log_b z = 0.83$. Evaluate the following expressions.

45.
$$\log_b \frac{x}{y}$$

46.
$$\log_b x^2$$

47.
$$\log_b xz$$

48.
$$\log_b \frac{\sqrt{xy}}{z}$$

1.3.45
$$\log_b\left(\frac{x}{y}\right) = \log_b x - \log_b y = 0.36 - .056 = -0.2.$$

1.3.46
$$\log_b x^2 = 2\log_b x = 2(0.36) = 0.72$$
.

1.3.47
$$\log_b xz = \log_b x + \log_b z = 0.36 + 0.83 = 1.19$$
.

$$1.3.48 \log_b \frac{\sqrt{xy}}{z} = \log_b(xy)^{1/2} - \log_b z = \frac{1}{2}(\log_b x + \log_b y) - \log_b z = (0.36)/2 + (0.56)/2 - 0.83 = -0.37.$$

51-60. Solving equations Solve the following equations.

59.
$$3^{3x-4} = 15$$

60.
$$5^{3x} = 29$$

1.3.59 Since
$$3^{3x-4} = 15$$
, we have that $\ln 3^{3x-4} = \ln 15$, so $(3x-4) \ln 3 = \ln 15$. Thus, $3x-4 = \frac{\ln 15}{\ln 3}$, so $x = \frac{(\ln 15)/(\ln 3)+4}{3} = \frac{\ln 15+4 \ln 3}{3 \ln 3} = \frac{\ln 5+\ln 3+4 \ln 3}{3 \ln 3} = \frac{\ln 5}{3 \ln 3} + \frac{5}{3}$.

1.3.60 Since
$$5^{3x} = 29$$
, we have that $\ln 5^{3x} = \ln 29$, so $(3x) \ln 5 = \ln 29$. Solving for x gives $x = \frac{\ln 29}{3 \ln 5}$.

77. Explain why or why not Determine whether the following statements are true and give an explanation or counterexample.

a. If
$$y = 3^x$$
, then $x = \sqrt[3]{y}$.

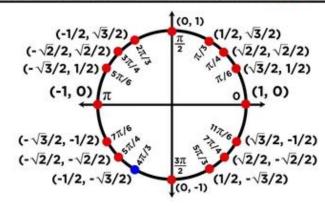
b.
$$\frac{\log_b x}{\log_b y} = \log_b x - \log_b y$$

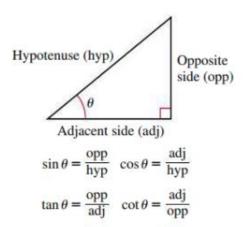
1.3.77

- a. False. For example, $3 = 3^1$, but $1 \neq \sqrt[3]{3}$.
- b. False. For example, suppose x = y = b = 2. Then the left-hand side of the equation is equal to 1, but the right-hand side is 0.

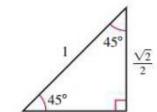
1.4 Trigonometric Functions Review

Understanding the Unit Circle: $(\cos \theta, \sin \theta)$

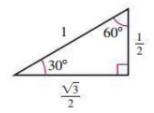




 $\sec \theta = \frac{\text{hyp}}{\text{adj}} \quad \csc \theta = \frac{\text{hyp}}{\text{opp}}$



Standard triangles



Trigonometric Identities

Reciprocal Identities

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$
 $\cot \theta = \frac{1}{\tan \theta} = \frac{\cos \theta}{\sin \theta}$
 $\csc \theta = \frac{1}{\sin \theta}$ $\sec \theta = \frac{1}{\cos \theta}$

Pythagorean Identities

$$\sin^2\theta + \cos^2\theta = 1 \qquad 1 + \cot^2\theta = \csc^2\theta \qquad \tan^2\theta + 1 = \sec^2\theta$$

Solve the following equations:

36.
$$2\theta\cos\theta+\theta=0$$

38.
$$\cos^2 \theta = \frac{1}{2}, 0 \le \theta < 2\pi$$

- 1.4.36 Given that $2\theta \cos(\theta) + \theta = 0$, we have $\theta(2\cos(\theta) + 1) = 0$. Which means that either $\theta = 0$, or $2\cos(\theta) + 1 = 0$. The latter leads to the equation $\cos \theta = -1/2$, which occurs at $\theta = 2\pi/3$ and $\theta = 4\pi/3$.
- 1.4.38 Given that $\cos^2\theta = \frac{1}{2}$, we have $|\cos\theta| = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$. Thus $\cos\theta = \frac{\sqrt{2}}{2}$ or $\cos\theta = -\frac{\sqrt{2}}{2}$. We have $\theta = \pi/4, 3\pi/4, 5\pi/4, 7\pi/4$.
- 91. Explain why or why not Determine whether the following statements are true and give an explanation or counterexample.

$$\mathbf{a.} \sin (a+b) = \sin a + \sin b$$

b. The equation $\cos \theta = 2$ has multiple solutions.

1.4.91

a. False. For example,
$$\sin(\pi/2 + \pi/2) = \sin(\pi) = 0 \neq \sin(\pi/2) + \sin(\pi/2) = 1 + 1 = 2$$
.

b. False. That equation has zero solutions, because the range of the cosine function is [-1,1].

92–95. One function gives all six Given the following information about one trigonometric function, evaluate the other five functions.

92.
$$\sin \theta = -\frac{4}{5}$$
 and $\pi < \theta < \frac{3\pi}{2}$

94.
$$\sec \theta = \frac{5}{3} \text{ and } \frac{3\pi}{2} < \theta < 2\pi$$

- 1.4.92 If $\sin \theta = -4/5$, then the Pythagorean identity gives $|\cos \theta| = 3/5$. But if $\pi < \theta < 3\pi/2$, then the cosine of θ is negative, so $\cos \theta = -3/5$. Thus $\tan \theta = 4/3$, $\cot \theta = 3/4$, $\sec \theta = -5/3$, and $\csc \theta = -5/4$.
- 1.4.94 If $\sec \theta = 5/3$, then $\cos \theta = 3/5$, and the Pythagorean identity gives $|\sin \theta| = 4/5$. But if $3\pi/2 < \theta < 2\pi$, then the sine of θ is negative, so $\sin \theta = -4/5$. Thus $\tan \theta = -4/3$, $\cot \theta = -3/4$, and $\csc \theta = -5/4$.