
Precalculus Review - Group Activity Problems

1.3 Exponential, Logarithmic Functions Review

Review: properties of In

1)
$$\ln(ab) = \ln a + \ln b$$

$$2) \quad \ln\frac{a}{b} = \ln a - \ln b$$

$$3) \quad \ln a^k = k \ln a$$

4)
$$\ln e = 1$$

5)
$$\ln 1 = 0$$

- 19. Evaluate each expression without a calculator.
 - **a.** $\log_{10} 1000$ **b.** $\log_2 16$ **c.** $\log_{10} 0.01$ **d.** $\ln e^3$ **e.** $\ln \sqrt{e}$

- **45–50.** Properties of logarithms Assume $\log_b x = 0.36$, $\log_b y = 0.56$, and $\log_b z = 0.83$. Evaluate the following expressions.
- 45. $\log_b \frac{x}{y}$

46. $\log_b x^2$

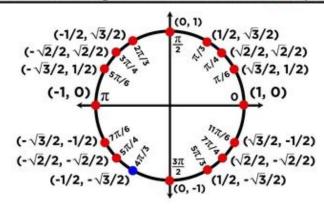
47. $\log_b xz$

48. $\log_b \frac{\sqrt{xy}}{z}$

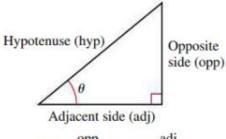
51–60. Solving equations *Solve the following equations.*

59.
$$3^{3x-4} = 15$$

60.
$$5^{3x} = 29$$


77. Explain why or why not Determine whether the following statements are true and give an explanation or counterexample.

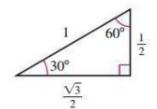
a. If
$$y = 3^x$$
, then $x = \sqrt[3]{y}$.


$$\mathbf{b.} \ \frac{\log_b x}{\log_b y} = \log_b x - \log_b y$$

1.4 Trigonometric Functions Review

Understanding the Unit Circle: $(\cos \theta, \sin \theta)$

Standard triangles



$$\sin \theta = \frac{\text{opp}}{\text{hyp}} \quad \cos \theta = \frac{\text{adj}}{\text{hyp}}$$

$$\tan \theta = \frac{\text{opp}}{\text{adj}} \quad \cot \theta = \frac{\text{adj}}{\text{opp}}$$

$$\sec \theta = \frac{\text{hyp}}{\text{adj}} \quad \csc \theta = \frac{\text{hyp}}{\text{opp}}$$

Trigonometric Identities

Reciprocal Identities

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$
 $\cot \theta = \frac{1}{\tan \theta} = \frac{\cos \theta}{\sin \theta}$
 $\csc \theta = \frac{1}{\sin \theta}$ $\sec \theta = \frac{1}{\cos \theta}$

Pythagorean Identities

$$\sin^2\theta + \cos^2\theta = 1 \qquad 1 + \cot^2\theta = \csc^2\theta \qquad \tan^2\theta + 1 = \sec^2\theta$$

Solve the following equations:

36.
$$2\theta \cos \theta + \theta = 0$$

38.
$$\cos^2 \theta = \frac{1}{2}, 0 \le \theta < 2\pi$$

- 91. Explain why or why not Determine whether the following statements are true and give an explanation or counterexample.
 - $\mathbf{a.} \sin (a+b) = \sin a + \sin b$
 - **b.** The equation $\cos \theta = 2$ has multiple solutions.

92–95. One function gives all six Given the following information about one trigonometric function, evaluate the other five functions.

92.
$$\sin \theta = -\frac{4}{5}$$
 and $\pi < \theta < \frac{3\pi}{2}$

94.
$$\sec \theta = \frac{5}{3} \text{ and } \frac{3\pi}{2} < \theta < 2\pi$$