Chapter 5.2-5.3 Worksheet Problems – Solutions

51. Properties of integrals Use only the fact that

 $\int_0^4 3x(4-x) dx = 32$, and the definitions and properties of integrals, to evaluate the following integrals, if possible.

a.
$$\int_{4}^{0} 3x(4-x) dx$$
 b. $\int_{0}^{4} x(x-4) dx$

b.
$$\int_{0}^{4} x(x-4) dx$$

c.
$$\int_{4}^{0} 6x(4-x) dx$$
 d. $\int_{0}^{8} 3x(4-x) dx$

d.
$$\int_0^8 3x(4-x) dx$$

a.
$$\int_{4}^{0} 3x(4-x) dx = -\int_{0}^{4} 3x(4-x) dx = -32.$$

b.
$$\int_0^4 x(x-4) dx = -\frac{1}{3} \int_0^4 3x(4-x) dx = -\frac{1}{3} \cdot 32 = -\frac{32}{3}$$
.

c.
$$\int_{4}^{0} 6x(4-x) dx = -2 \cdot \int_{0}^{4} 3x(4-x) dx = -2 \cdot 32 = -64.$$

d. $\int_0^8 3x(4-x) dx = \int_0^4 3x(4-x) dx + \int_4^8 3x(4-x) dx = 32 + \int_4^8 3x(4-x) dx.$ It is not possible to evaluate the given integral from the information given.

Evaluate the following by using FTC:

49.
$$\int_{1}^{8} \sqrt[3]{y} \, dy$$

50.
$$\frac{1}{2} \int_0^{\ln 2} e^x dx$$

51.
$$\int_{1}^{4} \frac{x-2}{\sqrt{x}} dx$$

52.
$$\int_{1}^{2} \frac{2s^2 - 4}{s^3} ds$$

5.3.49
$$\int_{1}^{8} \sqrt[3]{y} \, dy = \frac{3}{4} y^{4/3} \Big|_{1}^{8} = 12 - \frac{3}{4} = \frac{45}{4}.$$

5.3.50
$$\frac{1}{2} \int_0^{\ln 2} e^x \, dx = \frac{1}{2} \left(e^x \Big|_0^{\ln 2} \right) = \frac{1}{2} (2 - 1) = \frac{1}{2}.$$

5.3.51

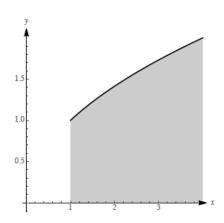
$$\begin{split} \int_{1}^{4} \frac{x-2}{\sqrt{x}} \, dx &= \int_{1}^{4} \left(\frac{x}{\sqrt{x}} - \frac{2}{\sqrt{x}} \right) \, dx = \int_{1}^{4} \left(x^{1/2} - 2x^{-1/2} \right) \, dx \\ &= \left(\frac{2}{3} x^{3/2} - 4x^{1/2} \right) \, \bigg|_{1}^{4} = \frac{16}{3} - 8 - \left(\frac{2}{3} - 4 \right) = \frac{14}{3} - \frac{12}{3} = \frac{2}{3}. \end{split}$$

5.3.52
$$\int_{1}^{2} \left(\frac{2}{s} - \frac{4}{s^3} \right) ds = \left(2 \ln|s| + \frac{2}{s^2} \right) \Big|_{1}^{2} = 2 \ln 2 + \frac{1}{2} - (0+2) = \ln 4 - \frac{3}{2}$$

- 63-66. Area Find (i) the net area and (ii) the area of the following regions. Graph the function and indicate the region in question.
- **63.** The region bounded by $y = x^{1/2}$ and the x-axis between x = 1 and x = 4

5.3.63

The area (and net area) of this region is given by $\int_{1}^{4} \sqrt{x} \, dx = \frac{2}{3} x^{3/2} \Big|_{1}^{4} = \frac{16}{3} - \frac{2}{3} = \frac{14}{3}$.



Evaluate the definite integrals.

69.
$$\int_{0}^{2} x^{3} \sqrt{16 - x^{4}} \, dx$$

70.
$$\int_{-1}^{1} (x-1)(x^2-2x)^7 dx$$

5.5.69 Let $u=16-x^4$. Then $du=-4x^3\,dx$. Also note that when x=0 we have u=16, and when x=2 we have u=0. Substituting yields $\frac{1}{4}\int_0^{16}\sqrt{u}\,du=\frac{1}{4}\left(\frac{2u^{3/2}}{3}\right)\Big|_0^{16}=\frac{32}{3}$.

5.5.70 Let $u = x^2 - 2x$. Then du = 2(x - 1) dx. Also note that when x = -1 we have u = 3 and when x = 1 we have u = -1. Substituting yields $\frac{1}{2} \int_{3}^{-1} u^7 du = \frac{1}{16} \left(u^8 \right) \Big|_{3}^{-1} = \frac{1}{16} \left(1 - 3^8 \right) = -\frac{6560}{16} = -410$.