Two Special Limits
Our principal goal is to determine derivative formulas for $\sin x$ and $\cos x$. To do this, we use two special limits.

THEOREM 3.10 Trigonometric Limits

$$
\lim _{x \rightarrow 0} \frac{\sin x}{x}=1 \quad \lim _{x \rightarrow 0} \frac{\cos x-1}{x}=0
$$

Pt it int the formula sheet!

Graph of $f(x)=\sin (x) /(x)$

Graph of $f(x)=(\cos (x)-1) /(x)$

EXAMPLE 1 Calculating trigonometric limits Evaluate the following limits.
a. $\lim _{x \rightarrow 0} \frac{\sin 4 x}{x}$
b. $\lim _{x \rightarrow 0} \frac{\sin 3 x}{\sin 5 x}$
a) Try "DSP" $\lim _{x \rightarrow 0} \frac{\sin 4 x}{x}=\frac{\sin (4.0)}{0}=\frac{0}{0}$ indetern \quad form

Use the special trip limit theorem: $\lim _{x \rightarrow 0} \frac{\sin 4 x}{x} \cdot \frac{4}{4}=\lim _{x \rightarrow 0} \frac{4 \cdot \sin 4 x}{4 x}=4$
b) Try "DSP"
$\lim _{x \rightarrow 0} \frac{\sin 3 x}{\sin 5 x}=\frac{0}{0}$ "ns"." indent. form; use special trig limit th:

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sin 3 x}{\sin 5 x} & =\lim _{x \rightarrow 0} \frac{\frac{\sin 3 x}{3 x} \cdot 3 x}{\frac{\sin 5 x}{5 x} \cdot 5 x} \quad\left(\begin{array}{l}
\text { they all cancel out, } \\
\text { lower, the lets } \\
\text { yo to we the special } \\
\text { trig lineit th. }
\end{array}\right) \\
& =\lim _{x \rightarrow 0} \frac{3 x}{5 x} \quad \text { (cancel ont x's) } \\
& =\lim _{x \rightarrow 0} \frac{3}{5}=\frac{3}{5}
\end{aligned}
$$

3.5 Official Textbook Problems (even numbered questions only)

Practice Exercises
11-22. Trigonometric limits Use Theorem 3.10 to evaluate the following limits.
11. $\lim _{x \rightarrow 0} \frac{\sin 3 x}{x}$
13. $\lim _{x \rightarrow 0} \frac{\sin 7 x}{\sin 3 x}$
15. $\lim _{x \rightarrow 0} \frac{\tan 5 x}{x}$
17. $\lim _{x \rightarrow 0} \frac{\tan 7 x}{\sin x}$
12. $\lim _{x \rightarrow 0} \frac{\sin 5 x}{3 x}$
14. $\lim _{x \rightarrow 0} \frac{\sin 3 x}{\tan 4 x}$
16. $\lim _{\theta \rightarrow 0} \frac{\cos ^{2} \theta-1}{\theta}$
18. $\lim _{\theta \rightarrow 0} \frac{\sec \theta-1}{\theta}$
19. $\lim _{x \rightarrow 2} \frac{\sin (x-2)}{x^{2}-4}$
20. $\lim _{x \rightarrow-3} \frac{\sin (x+3)}{x^{2}+8 x+15}$
21. $\lim _{x \rightarrow 0} \frac{\sin a x}{\sin b x}$, where a and b are constants with $b \neq 0$
22. $\lim _{x \rightarrow 0} \frac{\sin a x}{b x}$, where a and b are constants with $b \neq 0$

Use special trip. limit theorems:

$$
\begin{aligned}
& \text { 12) } \lim _{x \rightarrow 0}\left(\frac{\sin 5 x}{3 x}\right)=\lim _{x \rightarrow 0}\left(\frac{\sin 5 x}{3 x} \cdot \frac{5}{5}\right)=\lim _{x \rightarrow 0}\left(\frac{5 \times \sin 5 \text { these }}{3 \cdot 5 x}\right) \\
& =\left(\frac{5}{3}\right) \\
& \text { 14) } \lim _{x \rightarrow 0}\left(\frac{\sin 3 x}{\tan 4 x}\right)=\lim _{x \rightarrow 0}\left(\frac{\sin 3 x}{\left.\frac{\sin x}{\cos 4 x}\right)}=\lim _{x \rightarrow 0}\left(\frac{\sin x \cdot \cos 4 x}{\sin 4 x}\right)\right. \\
& =\lim _{x \rightarrow 0}\left(\frac{\sin 3 x \cdot 3 x}{1 \cdot 3 x} \cdot \frac{\cos 4 x}{1} \cdot \frac{1-14 x}{\sin 4 x-4 x}\right)=\lim _{x \rightarrow 0}\left(3 x \cdot \cos 4 x \cdot \frac{1}{4 x}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { recall: } \\
& \lim _{x \rightarrow 0} \frac{x}{\sin x}=1 \\
& \text { check goth! }
\end{aligned}
$$

16)

$$
\begin{aligned}
\lim _{\theta \rightarrow 0}\left(\frac{\cos ^{2} \theta-1}{\theta}\right) \quad \text { Recall: } \sin ^{2} \theta+\cos ^{2} \theta=1 \\
\cos ^{2} \theta-1=-\sin ^{2} \theta
\end{aligned}
$$

