Dr. Tabanli's Exam \#2 Review for Sections 13-15, 21-23

1. Consider the function $f(\mathrm{x})=\frac{(a x+2)(x-1)}{(x-2)}$, where a is an unspecified constant.
(i) For which of the following values of a does f have a horizontal asymptote?
(a) $a=0$ only $a=0$ only
(b) $a=6$ only
(c) $a=2$ only
(d) $a=1$ only
(e) f has a horizontal asymptote for no value of a
(f) f has a horizontal asymptote for all values of a
(g) there is not enough information to determine
(h) none of the above
(ii) Give the equation(s) of the horizontal asymptote if/when it exists.
2. Let $h(x)=\sqrt{3 f(x)}$ and the equation of the tangent line to $f(x)$ at $x=1$ is $y=9+3(x+1)$. Find $h^{\prime}(1)$.
3. Suppose $R(x)=3 x+8, B(2)=3,\left.\frac{d B}{d x}\right|_{x=2}=-2, Q(x)=\frac{R(x)}{B(x)}$, find $Q^{\prime}(2)$.
4. Suppose a is an unspecified constant and $f(x)=x-2 a \cdot \cos x$ has a horizontal tangent at $x=\frac{3 \pi}{2}$, find the value(s) of a.
5. Determine the constants b and c such that the line tangent to $f(x)=x^{2}+b x+c$ at $x=1$ is $y=4 x+2$.
6. Find the value of k that makes f continuous at $x=-3$ or determine that no such value of k exists. If there is no k value exists, write "DNE".

$$
f(x)=\left\{\begin{array}{lll}
\sqrt[3]{1-x^{2}}+k & , & x>-3 \\
\frac{x}{2} \cdot \sin \left(\frac{\pi}{2} \cdot x\right) & , & x=-3 \\
2 x+k x^{2} & , & x<-3
\end{array}\right.
$$

7. True or False For linear functions, the slope of any secant always equal to the slope of any tangent line.
8. True or False The slope of a line tangent to $f(x)=e^{x}$ is never 0 .
9. True or False $\frac{d\left(e^{3}\right)}{d x}=3 e^{2}$.
10. True or False The function $\sec x$ is not differentiable at $x=\frac{\pi}{2}$.
11. True or False A rational function is continuous for all x.
12. True or False The graph of a function can have any number of horizontal asymptotes.
13. Use the graph of f in the figure below to answer the questions:
(a) Determine the values of x in the interval $(0, e)$ at which f fails to be continuous.
(b) Determine the values of x in the interval $(0, e)$ at which f fails to be differentiable.
(c) Determine the sign of the slope of the curve at the following points as negative, positive and identify where the slope is zero.

- $x=\frac{a}{2}$
- $x=\frac{a+b}{2}$
- $x=c$

