Friday, October 16, 2020

Expa) Calculate
$$f'(x)$$
 when $f(x) = (\frac{1}{26x} + \frac{x^2}{4} - \frac{7^{2/3}}{4})^{\frac{1}{2}}$

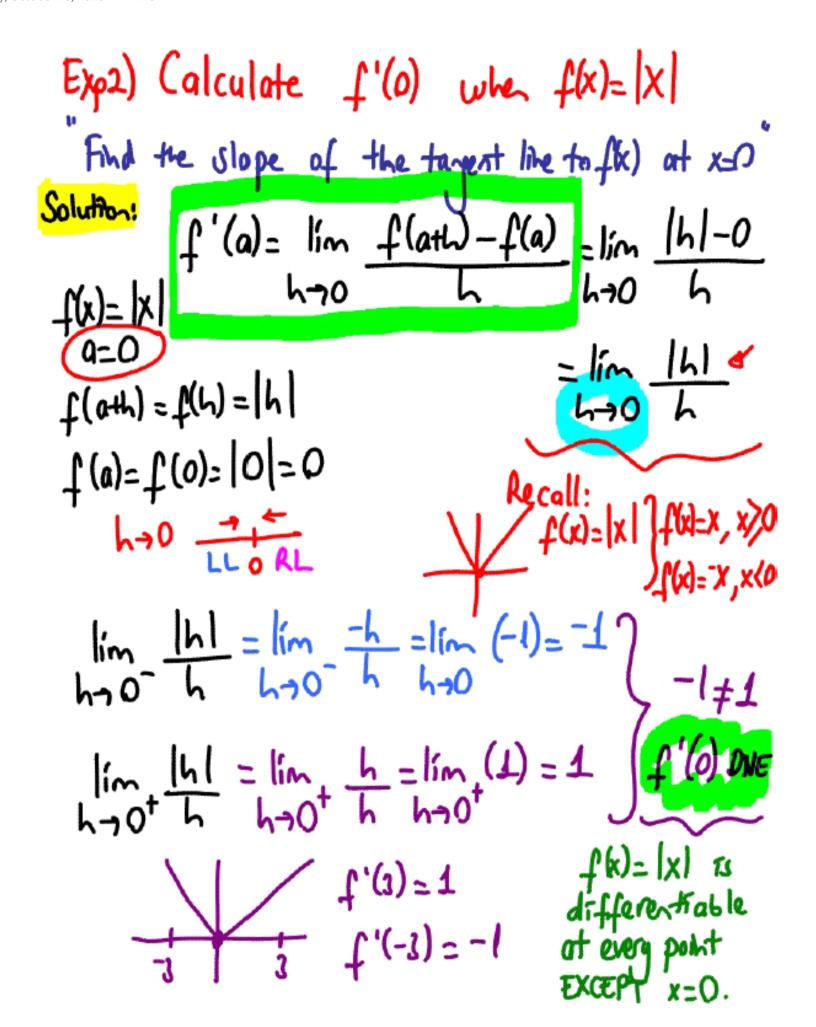
$$f'(x) = (\frac{1}{2(x)})^{\frac{1}{2}} + (\frac{x^2}{4})^{\frac{1}{2}} + (-\frac{7^{2/3}}{2^{2/3}})^{\frac{1}{2}}$$

$$= (\frac{1}{2} \cdot x^{-\frac{1}{2}})^{\frac{1}{2}} + (\frac{1}{4} \cdot x^2) + 0$$

$$= (\frac{1}{2} \cdot x^{-\frac{1}{2}}) \cdot x^{-\frac{1}{2}} + \frac{1}{4} \cdot 2x$$

$$= (\frac{1}{2} \cdot x^{-\frac{1}{2}}) \cdot x^{-\frac{1}{2}} + \frac{x}{2}$$

$$= (\frac{1}{2} \cdot x^{-\frac{1}{2}}) \cdot x^{-\frac{1}{2}} + \frac{x}{2}$$



Exp1) Find the equation of the target line to $f(x)=x^2-1$ at x=2.

Solution:

$$f(a)=f(2)=2^2-1$$

Eq. of tangent line is:

$$y-y=m_{tan}(x-x_1)$$

 $y-3=\frac{4}{4}(x-2)$

$$m_{tan} = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

$$m_{4a}=1$$
im $\frac{(4+4)^{2}-1)-3}{h}$

Exps) Calculate
$$f'(x)$$
 when $f(x)=e^{x} \cdot \cos x + \frac{1}{x} \cdot \ln x$

$$f(x)=e^{x} \cdot \cos x + \frac{1}{x} \cdot \frac{1}{x} \cdot \ln x = e^{x} \cdot \cos x + x \cdot \frac{1}{x} \cdot \ln x \cdot \left(\frac{\ln x}{x^3} + \ln \frac{1}{x}\right)$$

$$f'(x)=e^{x} \cdot \cos x + e^{x} \cdot (-\sin x) + \left(\frac{1}{x} \cdot \ln x\right)$$

$$= e^{x} \cdot \cos x - e^{x} \cdot \sin x + \left(\frac{1}{x} \cdot \ln x\right) + \left(\frac{1}{x} \cdot \ln x\right)$$

$$= e^{x} \cdot \cos x - e^{x} \cdot \sin x + \left(\frac{1}{x} \cdot \ln x\right) + \left(\frac{1}{x} \cdot \ln x\right)$$

$$= e^{x} \cdot \cos x - e^{x} \cdot \sin x + \left(\frac{1}{x} \cdot \ln x\right) + \left(\frac{1}{x} \cdot \ln x\right)$$

$$= e^{x} \cdot \cos x - e^{x} \cdot \sin x + \left(\frac{1}{x} \cdot \ln x\right) + \left(\frac{1}{x} \cdot \ln x\right)$$

$$= e^{x} \cdot \cos x - e^{x} \cdot \sin x + \left(\frac{1}{x} \cdot \ln x\right) + \left(\frac{1}{x} \cdot \ln x\right)$$

$$= e^{x} \cdot \cos x - e^{x} \cdot \sin x + \left(\frac{1}{x} \cdot \ln x\right) + \left(\frac{1}{x} \cdot \ln x\right)$$

$$= e^{x} \cdot \cos x - e^{x} \cdot \sin x + \left(\frac{1}{x} \cdot \ln x\right) + \left(\frac{1}{x} \cdot \ln x\right)$$

$$= e^{x} \cdot \cos x - e^{x} \cdot \sin x + \left(\frac{1}{x} \cdot \ln x\right) + \left(\frac{1}{x} \cdot \ln x\right)$$

$$= e^{x} \cdot \cos x - e^{x} \cdot \sin x + \left(\frac{1}{x} \cdot \ln x\right) + \left(\frac{1}{x} \cdot \ln x\right)$$

$$= e^{x} \cdot \cos x - e^{x} \cdot \sin x + \left(\frac{1}{x} \cdot \ln x\right)$$

$$= e^{x} \cdot \cos x - e^{x} \cdot \sin x + \left(\frac{1}{x} \cdot \ln x\right)$$

$$= e^{x} \cdot \cos x - e^{x} \cdot \sin x + \left(\frac{1}{x} \cdot \ln x\right)$$

$$= e^{x} \cdot \cos x - e^{x} \cdot \sin x + \left(\frac{1}{x} \cdot \ln x\right)$$

$$= e^{x} \cdot \cos x - e^{x} \cdot \sin x + \left(\frac{1}{x} \cdot \ln x\right)$$

$$= e^{x} \cdot \cos x - e^{x} \cdot \sin x + \left(\frac{1}{x} \cdot \ln x\right)$$

$$= e^{x} \cdot \cos x - e^{x} \cdot \sin x + \left(\frac{1}{x} \cdot \ln x\right)$$

$$= e^{x} \cdot \cos x - e^{x} \cdot \sin x + \left(\frac{1}{x} \cdot \ln x\right)$$

$$= e^{x} \cdot \cos x - e^{x} \cdot \cos x + \frac{1}{x} \cdot \ln x$$

$$= e^{x} \cdot \cos x - e^{x} \cdot \cos x + \frac{1}{x} \cdot \ln x$$

$$= e^{x} \cdot \cos x - e^{x} \cdot \cos x + \frac{1}{x} \cdot \ln x$$

$$= e^{x} \cdot \cos x - e^{x} \cdot \cos x + \frac{1}{x} \cdot \ln x$$

$$= e^{x} \cdot \cos x + \frac{1}{x} \cdot \ln x$$

$$= e^{x} \cdot \cos x + \frac{1}{x} \cdot \ln x$$

$$= e^{x} \cdot \cos x + \frac{1}{x} \cdot \ln x$$

$$= e^{x} \cdot \cos x + \frac{1}{x} \cdot \ln x$$

$$= e^{x} \cdot \cos x + \frac{1}{x} \cdot \ln x$$

$$= e^{x} \cdot \cos x + \frac{1}{x} \cdot \ln x$$

$$= e^{x} \cdot \cos x + \frac{1}{x} \cdot \ln x$$

$$= e^{x} \cdot \cos x + \frac{1}{x} \cdot \ln x$$

$$= e^{x} \cdot \cos x + \frac{1}{x} \cdot \ln x$$

$$= e^{x} \cdot \cos x + \frac{1}{x} \cdot \ln x$$

$$= e^{x} \cdot \cos x + \frac{1}{x} \cdot \ln x$$

$$= e^{x} \cdot \cos x + \frac{1}{x} \cdot \ln x$$

$$= e^{x} \cdot \cos x + \frac{1}{x} \cdot \ln x$$

$$= e^{x} \cdot \cos x + \frac{1}{x} \cdot \ln x$$

$$= e^{x} \cdot \cos x + \frac{1}{x} \cdot \ln x$$

$$= e^{x} \cdot \cos x + \frac{1}{x} \cdot \ln x$$

$$= e^{x} \cdot \cos x + \frac{1}{x} \cdot \ln x$$

$$= e^{x} \cdot \cos x + \frac{1}{x} \cdot \ln x$$

$$= e^{x} \cdot \cos x + \frac{1}{x}$$

=
$$\frac{0^{x}}{(\cos x - \sin x)} - \frac{5}{2} \cdot x^{-\frac{7}{2}} |_{x} + x^{-\frac{7}{2}}$$

Recall:

$$X = X = X = X = X$$
 $X = X = X$
 $X = X = X$

Explo) Find the equation of the tangent line to $f(x)=\frac{x^2+5}{x+5}$ at x=1. Any form of equation is acceptable. Solution: First find myon x=1 and x=1.

Then use the point $(x_1,y_1)=(1,f(1))$ to

write the equation of the tangent line to f(x) at $(1,f(1)) \Rightarrow y-y_1=m_{tan}(x-x_1)$

 $\int'(x) = \left(\frac{x^2+5}{x+5}\right)' = \frac{(x^2+5)'(x+5)-(x^2+5)(x+5)'}{(x+5)^2}$

 $f'(x) = 2x(x+5) - (x^2+5) \cdot 1 - (00 \text{ not simplify})$ $f'(1) = 2 \cdot 1(1+5) - (1^2+5) \cdot 1$ $f'(1) = 2 \cdot 1(1+5) - (1^2+5) \cdot 1$

$$f'(1) = 2.6 - 6 = \frac{6}{6^2} = \frac{1}{6} = \frac{1}{6}$$

$$(f(x)=\frac{x^2+5}{x+5}) \Rightarrow f(1)=\frac{1^2+5}{1+5}=\frac{6}{6}=1$$
 (1,1)

Use the point-stope form!

$$y-y_1=m_{4n}(x-x_1)$$

 $y-1=\frac{1}{6}(x-1)$
(1,1)

mnormal =
$$\frac{-1}{m_{tan}}$$
 eq. of the normal = $\frac{-1}{m_{tan}}$ normal live:

Midterm#3 Review Q

Sunday, October 11, 2020 9:24 PM

85. Finding derivatives from a table Find the values of the following derivatives using the table.

	x	1	3	5	7	9						
	f(x)	3	1	9	7	5						
7	f'(x)	7	9	5	1	3		_	1			
·	g(x)	9	7	5	3	1		C	hain	7002		
	g'(x)	5	9	3	1	7		~				
d. $\frac{d}{dx}(f($	(x) ⁽³⁾	r=5	1		p	~es ,)]r.) 9/0	(x)		X-	5
				3 j.	9	(5)] ¹ .(-	1215				

72-76. Tangent lines Find an equation of the line tangent to each of the following curves at the given point.

73.
$$y = 3x^3 + \sin x \begin{pmatrix} 0, 0 \\ x_1, y_1 \end{pmatrix}$$

$$\frac{dy}{dx} = 3 \cdot 3 \cdot x^2 + \cos x = 9x^2 + \cos x$$

$$\frac{dy}{dx} = 3 \cdot 3 \cdot x^2 + \cos x = 9x^2 + \cos x$$

$$\frac{dy}{dx} = 3 \cdot 3 \cdot x^2 + \cos x = 9x^2 + \cos x$$

$$\frac{dy}{dx} = 3 \cdot 3 \cdot x^2 + \cos x = 9x^2 + \cos x$$

$$\frac{dy}{dx} = 3 \cdot 3 \cdot x^2 + \cos x = 9x^2 + \cos x$$

$$\frac{dy}{dx} = 3 \cdot 3 \cdot x^2 + \cos x = 9x^2 + \cos x$$

$$\frac{dy}{dx} = 3 \cdot 3 \cdot x^2 + \cos x = 9x^2 + \cos x$$

$$\frac{dy}{dx} = 3 \cdot 3 \cdot x^2 + \cos x = 9x^2 + \cos x$$

$$\frac{dy}{dx} = 3 \cdot 3 \cdot x^2 + \cos x = 9x^2 + \cos x$$

$$\frac{dy}{dx} = 3 \cdot 3 \cdot x^2 + \cos x = 9x^2 + \cos x$$

$$\frac{dy}{dx} = 3 \cdot 3 \cdot x^2 + \cos x = 9x^2 + \cos x$$

$$\frac{dy}{dx} = 3 \cdot 3 \cdot x^2 + \cos x = 9x^2 + \cos x$$

$$\frac{dy}{dx} = 3 \cdot 3 \cdot x^2 + \cos x = 9x^2 + \cos x$$

$$\frac{dy}{dx} = 3 \cdot 3 \cdot x^2 + \cos x = 9x^2 + \cos x$$

$$\frac{dy}{dx} = 3 \cdot 3 \cdot x^2 + \cos x = 9x^2 + \cos x$$

$$\frac{dy}{dx} = 3 \cdot 3 \cdot x^2 + \cos x = 9x^2 + \cos x$$

$$\frac{dy}{dx} = 3 \cdot 3 \cdot x^2 + \cos x = 9x^2 + \cos x$$

$$\frac{dy}{dx} = 3 \cdot 3 \cdot x^2 + \cos x = 9x^2 + \cos x$$

$$\frac{dy}{dx} = 3 \cdot 3 \cdot x^2 + \cos x = 9x^2 + \cos x$$

$$\frac{dy}{dx} = 3 \cdot 3 \cdot x^2 + \cos x = 9x^2 + \cos x$$

$$\frac{dy}{dx} = 3 \cdot 3 \cdot x + \cos x = 9x^2 + \cos x$$

$$\frac{dy}{dx} = 3 \cdot 3 \cdot x + \cos x = 9x^2 + \cos x$$

$$\frac{dy}{dx} = 3 \cdot 3 \cdot x + \cos x = 9x^2 + \cos x$$

$$\frac{dy}{dx} = 3 \cdot 3 \cdot x + \cos x = 9x^2 + \cos x$$

$$\frac{dy}{dx} = 3 \cdot 3 \cdot x + \cos x = 9x^2 + \cos x$$

$$\frac{dy}{dx} = 3 \cdot 3 \cdot x + \cos x = 9x^2 + \cos x$$

$$\frac{dy}{dx} = 3 \cdot 3 \cdot x + \cos x = 9x^2 + \cos x$$

$$\frac{dy}{dx} = 3 \cdot 3 \cdot x + \cos x = 9x^2 + \cos x$$

$$\frac{dy}{dx} = 3 \cdot 3 \cdot x + \cos x = 9x^2 + \cos x$$

$$\frac{dy}{dx} = 3 \cdot 3 \cdot x + \cos x = 9x^2 + \cos x$$

$$\frac{dy}{dx} = 3 \cdot 3 \cdot x + \cos x = 9x^2 + \cos x$$

$$\frac{dy}{dx} = 3 \cdot 3 \cdot x + \cos x = 9x^2 + \cos x$$

$$\frac{dy}{dx} = 3 \cdot 3 \cdot x + \cos x = 9x^2 + \cos x$$

$$\frac{dy}{dx} = 3 \cdot 3 \cdot x + \cos x = 9x^2 + \cos x$$

$$\frac{dy}{dx} = 3 \cdot 3 \cdot x + \cos x$$

$$\frac{dy}{dx} = 3 \cdot 3 \cdot x + \cos x$$

$$\frac{dy}{dx} = 3 \cdot 3 \cdot x + \cos x$$

$$\frac{dy}{dx} = 3 \cdot 3 \cdot x + \cos x$$

$$\frac{dy}{dx} = 3 \cdot 3 \cdot x + \cos x$$

$$\frac{dy}{dx} = 3 \cdot 3 \cdot x + \cos x$$

$$\frac{dy}{dx} = 3 \cdot 3 \cdot x + \cos x$$

$$\frac{dy}{dx} = 3 \cdot 3 \cdot x + \cos x$$

$$\frac{dy}{dx} = 3 \cdot 3 \cdot x + \cos x$$

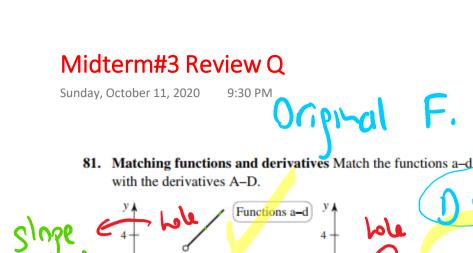
$$\frac{dy}{dx} = 3 \cdot 3 \cdot x + \cos x$$

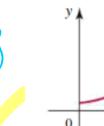
$$\frac{dy}{dx} = 3 \cdot 3 \cdot x + \cos x$$

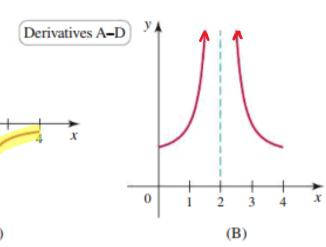
$$\frac{dy}{dx} = 3$$

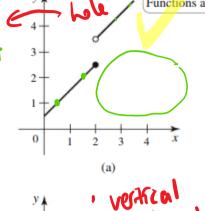
d.
$$\frac{d}{dx} (f(x))^3 \Big|_{x=5} = 3f(5)^2 f'(5) = 3(9)^2 \cdot 5 = 1215.$$

73 $y' = 9x^2 + \cos x$. At x = 0, y' = 1. So the tangent line is given by y - 0 = 1(x - 0), or y = x.

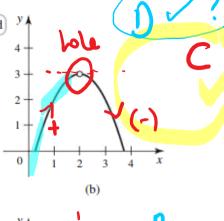




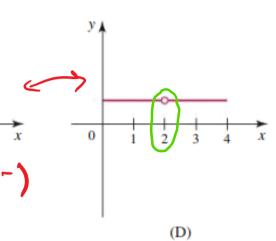




(c)







- Explain why or why not Determine whether the following statements are true and give an explanation or counterexample.
 - **a.** The function f(x) = |2x + 1| is continuous for all x; therefore, it is differentiable for all x.

False False

b. If $\frac{d}{dx}(f(x)) = \frac{d}{dx}(g(x))$, then f = g. b. f(x)=x2+6

 $g(x) = x^2 + 11$ g'(x) = 2x

a. Just because f(x) is out, for all x, doesn't necessarily near it's diff.

for all x. There's a corner p. of x= 1/2
(2x+1=0)