Midterm\#4 Review: Sect 3.8, 3.11, 4.6
Sunday, October 25, $2020 \quad 9: 54 \mathrm{PM}$
3.8: implicit differentiation, logarithmic differentiation
3.11: related rates and applications
4.6: linear approximation, marginal analysis

You try it!
Find the eq. of the tangent the to graph of

$$
x^{2}+(y-x)^{3}=9 \text { at } x=1
$$

A) $y+3=\frac{-6}{5}(x-1)$
B) $y-3=\frac{5}{6}(x-1)$
c) $y-3=\frac{2}{3}(x-1)$
D) Nose of the above

Solution: Differentiate both sides wot x :

$$
2 x+3(y-x)^{2} \cdot\left(\frac{d y}{d x}-1\right)=0
$$

subs. $(x, y) \rightarrow(1,3)$
$x=1$ subs. in $x^{2}+(y-x)^{3}=9$
yields $y=3$

$$
\begin{aligned}
& 2 \cdot 1+3(3-1)^{2}\left(\frac{d y}{d x}-1\right)=0 \\
& 2+3 \cdot 4\left(\frac{d y}{d x}-1\right)=0 \\
& 12\left(\frac{d y}{d x}-1\right)=-2 \\
& \frac{d y}{d x}-1=-\frac{1}{6} \Rightarrow \frac{d y}{d x}=\frac{5}{6}=m_{\tan }
\end{aligned}
$$

Eq. of the tagent the: $y-3=\frac{5}{6}(x-1)$

A boat is pulled toward a dock by a rope through a ring on the dock 4 ft above the front of the boat. The rope is hauled in at the rate of $12 \mathrm{ft} / \mathrm{sec}$.

(a) Which of the marked variables $(x, y, L$, and $\theta)$ are changing over time?
(b) Write a mathematical equation that expresses the English sentence "The rope is hauled in at the rate of $12 \mathrm{ft} / \mathrm{sec}$ ".
(c) Is $\cos (\theta)$ increasing, decreasing, or constant?
(d) Write a mathematical expression for "the rate at which the boat approaches the dock".
(e) How fast in $\mathrm{ft} / \mathrm{sec}$ is the boat approaching the dock when the rope is 5 ft long?
a) $x \rightarrow$ borizatal distacce betuen the front of the boat and the dock
(chaging/decreasing)
(not changy, onstant)

A boat is pulled toward a dock by a rope through a ring on the dock 4 ft above the front of the boat. The rope is hauled in at the rate of $12 \mathrm{ft} / \mathrm{sec}$.

(a) Which of the marked variables $(x, y, L$, and $\theta)$ are changing over time?
(c) Is $\cos (\theta)$ increasing, decreasing, or constant?
(d) Write a mathematical expression for "the rate at which the boat approaches the dock".
(e) How fast in $\mathrm{ft} / \mathrm{sec}$ is the boat approaching the dock when the rope is 5 ft long?

a. Write the equation of the line that represents the linear approximadion to the following functions at the given point a.
b. Use the linear approximation to estimate the given quantity.
c. Compute the percent error in your approximation, $100 \mid$ approximation - exact $|/|$ exact \mid, where the exact value is given by a calculator.

$$
\begin{aligned}
& f(x)=\ln (1+x) ; a=0 ; f(0.9) \\
& y=L(x)=f(a)+f^{\prime}(a)(x-a) \quad\left[\begin{array}{r}
y-y_{1}=m \\
\left(x-x_{1}\right)
\end{array}\right] \\
& f^{\prime}(x)=\ln (1+x) \\
& a=0 \\
& f^{(}(a)=f^{(n)}=\ln (1+0)=\ln 1=0 \\
& f^{\prime}(x)=[\ln (1+x)]^{\prime}=\frac{(1+x)^{\prime}}{1+x}=\frac{1}{1+x} \\
& f^{\prime}(a)=f^{\prime}(0)=\frac{1}{1+0}=1 \\
& \quad L(x)=0+1 \cdot(x-0)=x \\
& f^{(0.9)} \approx L(0.9)=0.9
\end{aligned}
$$

Midterm\#4 Review
c)

$$
\begin{aligned}
& \text {) } \% \text { error } \Rightarrow \frac{|00 \cdot| \text { approx. -exact } \mid}{\mid \text { exact } \mid} \\
& \text { exact } \rightarrow \ln (1+0.9) \approx 0.641853 \\
& \text { approx } \rightarrow L(0.9)=0.9 \\
& \% \text { error }
\end{aligned} \begin{aligned}
& =\frac{100 \cdot|0.9-0.641853|}{|0.641853|} \\
& \approx 40.2 \%
\end{aligned}
$$

