47-48. Use the graphs of f^{\prime} and $f^{\prime \prime}$ to find the critical points and inflection points of f, the intervals on which f is increasing and decreasing, and the intervals of concavity. Then graph f assuming $f(0)=0$.
$f^{\prime \prime}(x)$

$$
\begin{aligned}
& f^{\prime}(x)>0 \text { an }(0,2) \\
& f(x) \text { is incr. a }(0,2) / \\
& f^{\prime}(1)=0(\text { critical } \text { p. at } x=1) \\
& f^{\prime \prime}(x)<0 \text { a }(0,1) \cap \\
& f^{\prime \prime}(x)>0 \text { on }(1,2) \cup \\
& P_{0} I \text { when concavity changes } \\
& x=1 \text { is the PoI }
\end{aligned}
$$

7-8. Sketch a graph of a function f with the following properties.
7. $\begin{aligned} & f^{\prime}<0 \text { and } f^{\prime \prime}<0 \text {, for } x<3 \\ & f^{\prime}<0 \text { and } f^{\prime \prime}>0 \text {, for } x>3\end{aligned} \rightarrow f$ is decreasing, f is concave down $x<3$

A local park has hired you to construct a rectangular flower garden surrounded by a grass border that is 1 m wide on two sides and 2 m wide on the other two sides. (See the figure blow.) The area of the garden only (the small rectangle) must be $126 \mathrm{~m}^{2}$. Your primary task is to find the dimensions of the garden that give the smallest possible combined area of the garden and the grass border. For this problem, let W be the horizontal width of the garden and let H be the vertical height of the garden.

(a) What is the objective function for this problem in terms of W and H ?
(b) What is the constraint equation for this problem in terms of W and H ?
(c) Find the objective function in terms of W only.
(d) What is the interval of interest for the objective function? $\xrightarrow{\longrightarrow}$ ($)$
(e) Find the values of W and H that minimize the total combined area.
(f) What horizontal width W of the garden will maximize the total area?

Onbined area

a)

Ob:

$$
A(W, H)=(W+4) \cdot(H+2)
$$

$$
W H=126
$$

b) Constraint eq: $W \cdot H=126$

$$
H=\frac{126}{\omega}
$$

$$
\begin{aligned}
& A(w, 11) \rightarrow A(w) \\
& A(w)=(w+4) \cdot\left(\frac{126}{w}+2\right)=126+2 w+\frac{504}{w}+8 \\
&=134+2 w+504 \cdot w^{-1}
\end{aligned}
$$

e) $m \mathbb{N} \cdot A(w)$

$$
A^{\prime}(w)=0 \text { or DNE; } A^{\prime}(w)=\left(136+2 w+5 x w \cdot w^{-1}\right)^{\prime}
$$

$$
\text { (nt. P: } \quad 2 \omega^{2}-5 n 4=0, \omega=0
$$

$$
(0,0) \begin{array}{r}
\begin{array}{l}
w^{2}=252 \\
w=6 \sqrt{7} \\
\underbrace{w}=6
\end{array} \\
\hline
\end{array}
$$

e) $m \mathbb{N} \cdot A(W)$
$A^{\prime}(w)=0$ or DNE ; $A^{\prime}(w)=\left(134+2 w+504 \cdot w^{-1}\right)^{\prime}$
crt. P: $\quad 2 \omega^{2}-5 n 4=0, \omega=0$

$$
\begin{array}{cl}
(0, \infty) & w^{2}=252 \\
w=6 \sqrt{7}
\end{array}
$$

$$
\begin{aligned}
& =0+2-1 \cdot w^{-2} \cdot 504 \\
& =2-504 \cdot w^{-2}=0 \\
& =2-\frac{504}{w^{2}}=\frac{2 w^{2}-504}{w^{2}}
\end{aligned}
$$

local mi at $\omega=6 \sqrt{7}$

$$
\begin{aligned}
& A^{\prime \prime}(w)=\left(2-504 \cdot w^{-2}\right)^{\prime}=0+\underbrace{504 \cdot(+2) \cdot w^{-3}}_{\qquad 0} \\
& A_{\rightarrow}^{\prime \prime}(w)>0=6 \sqrt{7} \quad \frac{\text { pos. }}{\frac{\text { global min }}{\text { local }}} 1
\end{aligned}
$$

When $w=6 \sqrt{7} \mathrm{~m} . A(w)$ is miN.

$$
W \cdot H=126 \Rightarrow H=\frac{126^{21}}{6 \sqrt{7}}=\frac{2^{3} \sqrt{7}}{7}=3 \sqrt{7} \mathrm{~m} .
$$

Identity the critical points and the inflection points of
$f(x)=(x-a) \cdot(x+a)^{3}$, for $\underbrace{a>0 .}$
$a \rightarrow(t)$ Grstant
critical Pr
$f^{\prime}(x)=0$ or ONE

$$
f^{\prime}(x)=1 \cdot(x+a)^{3}+(x-a) \cdot 3(x+a)^{2} \cdot 1
$$

$$
=(x+a)^{2} \cdot\left((x+a)^{1}+3(x-a)\right)
$$

$$
=(x+a)^{2}(x+a+3 x-3 a)=(x+a)^{2}(4 x-2 a)
$$

$$
f^{\prime}(x)=\underbrace{(x+a)^{2}}_{0} \cdot \underbrace{(4 x-2 a)}_{0}=0
$$

$$
x+a=0
$$

$$
x=-a
$$

PoI

$$
4 x-2 a=0
$$

$$
\frac{4 x}{4}=\frac{2 a}{4} ; x=\frac{a}{2}
$$

$$
\begin{aligned}
f^{\prime \prime}(x) & =\left[(x+a)^{2} \cdot(4 x-2 a)\right]^{\prime} \quad \frac{4 x}{4}=\frac{2 a}{4} \\
& =2^{\prime}(x+a) \cdot 1 \cdot \frac{(4 x-2 a)}{2(2 x-a)}+(x+a)^{2} \cdot 4 \\
& =4(x+a)\left[(2 x-a)+(x+a)^{2}\right] f^{\prime \prime}(-3 a) \\
& =4(x+a)(3 x)=12 x(x+a)
\end{aligned}
$$

sip?
chat

