Official List of Problem-3.9
Q85) Use log. diff. to evaluate $f^{\prime}(x)$

$$
\begin{aligned}
& f(x)=\left(1+\frac{1}{x}\right)^{x} \\
& \ln (f(x))=\ln \left(1+\frac{1}{x}\right)^{x} \\
& \ln (f(x))=x \cdot \ln \left(1+\frac{1}{x}\right) \\
& \frac{f^{\prime}(x)}{f(x)}=\ln \cdot \ln \left(1+\frac{1}{x}\right)+x \cdot \frac{\left(1+\frac{1}{x}\right)^{\prime}}{1+\frac{1}{x}} \\
& \frac{\left(1+x^{-1}\right)^{\prime}}{\frac{x+1}{x}}=\frac{-x^{-2}}{\frac{x+1}{x}}=\frac{-1 / x+x}{x+1 / x}=\frac{-1}{x(x+1)}
\end{aligned}
$$

$$
\begin{aligned}
f(x) \cdot \frac{f^{\prime}(x)}{f(x)} & =\left[\ln \left(1+\frac{1}{x}\right)-\frac{1}{x+1}\right] \cdot f(x) \\
f^{\prime \prime}(x) & =\left[\ln \left(1+\frac{1}{x}\right)-\frac{1}{x+1}\right] \cdot\left(1+\frac{1}{x}\right)^{x}
\end{aligned}
$$

Official List of Pmblems - 3.8
Q66) Find the eq. of the vesical ad corizental tangent lines for $x^{2}+4 y^{2}+2 x y=12$
Implicit diff: $\quad 2 x+8 y^{\prime} y^{\prime}+2 x y^{\prime}+2 y=0$

$$
\begin{gathered}
2 x+y^{\prime}(8 y+2 x)+2 y=0 \\
y^{\prime}=\frac{-2 y-2 x}{8 y+2 x}
\end{gathered}
$$

Horizontal tapeline $\Rightarrow y^{\prime}=0$

$$
y^{\prime}=0 \Rightarrow-2 y-2 x=0 \Rightarrow x=-y
$$

Use the anginal eq:

$$
\begin{aligned}
& x^{2}+4 y^{2}+2 x y=12 \\
& (-y)^{2}+4 y^{2}+2(-y) \cdot y=12 \\
& y^{2}+4 y^{2}-2 y^{2}=3 y^{2}=12 \Rightarrow y= \pm 2
\end{aligned}
$$

Vertical tagent line $\Rightarrow y^{\prime}$ undef. (decorator of $y^{\prime}=0$)

$$
8 y+2 x=0 \Rightarrow x=-4 y
$$

use the minimal eq:

$$
\begin{aligned}
& x^{2}+4 y^{2}+2 x y=12 \\
& (-4 y)^{2}+4 y^{2}+2(-4 y) \cdot y=12 \\
& 16 y^{2}+4 y^{2}-8 y^{2}=12 \Rightarrow 12 y^{2}=12 \Rightarrow y= \pm 1
\end{aligned}
$$

when $y=1 \Rightarrow x=-4 \cdot 1=-4 ; \quad y=-1 \Rightarrow x=-4 ;-1=4 ; x= \pm 4$

