mylar problem on 3.9 Leg. Orfferctration
Use logarithmic differentiation to evaluate $f^{\prime}(x)$.

$$
\begin{align*}
& f(x)=(3 x)^{1 / 3 x} \\
& \ln (f(x))=\sqrt{\sqrt{\ln }(3 x)^{6(3 x)}}=\ln (3 x) \cdot \ln (3 x) \\
& f(x) \cdot \frac{f^{\prime}(x)}{f(x)}=\frac{3}{\partial x} \cdot \ln (3 x)+\ln (3 x) \cdot \frac{3}{3 x}=\left(\frac{2}{x} \cdot \ln (3 x)\right) \cdot f(x) \begin{array}{ll}
\text { Diff. } \\
\text { wrtx }
\end{array} \\
& f^{\prime}(x)=\frac{2}{x} \cdot \ln (3 x) \cdot(3 x)^{\ln (3 x)} \quad \text { Get } f^{\prime}(x) \text { by self } \\
& \text { prop. }
\end{align*}
$$

$f^{\prime}(x)=\frac{2}{x} \cdot \ln (3 x) \cdot \underbrace{\operatorname{lng} f y \text { as: }}_{\zeta \text { may } \sin (3 x)^{\ln (3 x)}}$ Get $f^{\prime}(x)$

$$
\begin{gathered}
(3 x)^{\ln (3 x)^{\prime}=y} \\
\ln (3 x) \cdot \ln 3 x=\operatorname{l}_{3} y \\
y=e^{\ln (3 x) \cdot \ln (3 x)} \\
y=e^{\ln ^{2}(3 x)}
\end{gathered}
$$

rewrite as:

$$
f^{\prime}(x)=\frac{2 \ln (3 x)}{x} \cdot e^{\ln ^{2}(3 x)}
$$

