Find the values of c and d that make f continuous for all x or determine that no such values of c and d exist.
$f(x)=\left\{\begin{array}{lll}\frac{\sin (6 x)}{c x} & , & x<0 \\ d & , 0 \leq x \leq 6 \\ \frac{x^{2}-6 x}{x-6} & , \quad x>6\end{array}\right.$
3 caditions forcont.

1) $f(x) \rightarrow f(0)$
2) $\lim _{x \rightarrow a} f(x) \rightarrow \lim _{h \rightarrow 0} f(x)$
3) $1=2$)
special trip lina: $\lim _{x \rightarrow 0} \frac{\sin (k x)}{(k x)}=1$
First, check the cat. for each piece:
Check the 3 ondrions for traction P. $\quad(x=0,6)$
$x=0$
4) $f(n)=d$

$$
\text { 2) } \lim _{x \rightarrow 0^{-} f(x) \rightarrow R L}=\begin{aligned}
& f(\\
& \lim _{x \rightarrow 0^{+}}(d)=\lim _{x \rightarrow 0^{-}} \tilde{f(x)} \\
& \lim _{x \rightarrow 0^{+}}(d)=\lim _{x \rightarrow 0^{-}}\left(\frac{\sin (6 x)}{c x} \cdot \frac{6}{6}\right) \\
& d=\lim _{x \rightarrow 0^{-}}\left(\frac{6}{c}\right) \Rightarrow d=\frac{6}{c}
\end{aligned}
$$

3) $f(0)=\lim _{x \rightarrow 0} f(x) \Rightarrow d=d=\frac{b}{c}$
$x=6$
4) $f(b)=d$

$$
\begin{aligned}
&\left(\lim _{x \rightarrow 6} f(x)-\lim _{x \rightarrow 6^{-}} f(x)\right.=R L \\
& \lim _{x \rightarrow 6^{+}} f(x) \\
& \lim _{x \rightarrow 6^{-}}(d)=\lim _{x \rightarrow 6^{+}}\left(\frac{x(x-6)}{x-6}\right) \\
& d=6
\end{aligned}
$$

3) $d=6$

$$
d=\frac{6}{c} \Rightarrow 6=\frac{6}{c} \Rightarrow c=1
$$

