DEFINITION Higher-Order Derivatives

Assuming y = f(x) can be differentiated as often as necessary, the **second** derivative of f is

$$f''(x) = \frac{d}{dx}(f'(x)).$$

For integers $n \ge 1$, the *n***th derivative** of f is

$$f^{(n)}(x) = \frac{d}{dx}(f^{(n-1)}(x)).$$

Other common notations for the second derivative of y = f(x) include $\frac{d^2y}{dx^2}$ and $\frac{d^2f}{dx^2}$; the notations $\frac{d^ny}{dx^n}$, $\frac{d^nf}{dx^n}$, and $y^{(n)}$ are used for the *n*th derivative of f.

EXAMPLE 6 Finding higher-order derivatives Find the third derivative of the following functions.

a.
$$f(x) = 3x^3 - 5x + 12$$

b.
$$y = 3t + 2e^t$$

a.
$$f'(x) = 3.3.x^{2} - 5.1 + 0 = 9x^{2} - 5$$

 $f'''(x) = \frac{dx^{2}}{dx^{2}} = \frac{d}{dx}(9x^{2} - 5) = 9.2.x^{1} = \frac{18x}{18}$

b.
$$\frac{dy}{dt} = \frac{d}{dt}(3t + 2e^{t}) = 3 + 2e^{t}$$

 $\frac{d^{2}y}{dt^{2}} = (3+2e^{t})' = 0+2e^{t}$
 $\frac{d^{3}y}{dt^{2}} = \frac{d}{dt}(2e^{t}) = 2e^{t}$

▶ Parentheses are placed around n to distinguish a derivative from a power. Therefore, f⁽ⁿ⁾ is the nth derivative of f, and fⁿ is the function f raised to the nth power. By convention, f⁽⁰⁾ is the function f itself.

The notation $\frac{d^2f}{dx^2}$ comes from $\frac{d}{dx}\left(\frac{df}{dx}\right)$ and is read $d \ge f dx$ squared.