Find abs.
$$min/nax$$
 values for
 $f(x) = \frac{9}{x} + x - 3$ on [1,9]
Poll choices:
A) Abs. min at $x = 3$
B) Abs. min at $x = 1$
C) Abs. min at $x = 9$
D) Abs. min at $x = 0$
E) Abs. min at $x = -3$

Supplementary Problems Page 1

step1
$$f(x)$$
 is NOT continuous at $x=0$
lowever, 0 is not in $[1,9]$
 $f(x)=9\cdot x^{-1}+x-3$
 $f'(x)=-9x^{-2}+1$
critical $p. \rightarrow f'(x)=0$ or DNE
 $f'(x)=0=7$ $\frac{-9}{x^{-1}}+1=0=3$ $\frac{-9}{x^{-2}}=-1=9=x^{-1}$
 $x=3$ $x=3$
 $x=3$ $x=3$
not in [1,9]
 $p. x=3$ is a crit. P.
 $f'(x)$ DNE : $x=0$, however, as stated before
 $x=0$ is NDT in $[1,9]$
endpoints: $x=1, 9$
 $Step2$ x $f(x)=\frac{9}{3}+x-3$
critical P 3 $f(3)=\frac{9}{3}+3-3=3$ min

endpoints

1 f(1)=9+1-3=7 max 9 $f(9)=\frac{9}{9}+9-3=7$ max 9 $g(9)=\frac{9}{9}+9-3=7$ max

The absolute max. is 7, the abs. max points are: (1,7) and (9,7). (It's OK that the abs. max. values occur at multiple x-values)

The abs. min. is I, the abs. min point is: (3,3)

Supplementary Problems Page 3