4.1 Absolute Min/ Max

Find abs. min/max vales for $f(x)=\frac{9}{x}+x-3$ on $[1,9]$
Poll choices:
A) Abs. min at $x=3$
B) Abs. min. at $x=1$
c) Abs. min at $x=9$
D) Abs. min at $x=0$
E) Abs. min at $x=-3$

Step 1 n $f(x)$ is ND continuous at $x=0$ however, 0 is not in $[1,9]$

$$
\begin{aligned}
& f(x)=9 \cdot x^{-1}+x-3 \\
& f^{\prime}(x)=-9 x^{-2}+1
\end{aligned}
$$

critical p. $\rightarrow f^{\prime}(x)=0$ or DNE

$$
\begin{aligned}
f^{\prime}(x)=0 \Rightarrow \frac{-9}{x^{2}}+1=0 \Rightarrow \frac{-9}{x^{2}}=-1 \Rightarrow & 9=x^{2} \\
x & =3<1 \\
& \text { noting }[1,9]
\end{aligned}
$$

only $x=3$ is a crit. P.
$f^{\prime}(x)$ ONE : $x=0$, however, as stated before $x=0$ is NDT in $[1,9]$
endpoints: $x=1,9$

| Step | $x$ | $f(x)=\frac{9}{x}+x-3$ |
| :--- | :---: | :--- |
|  | 3 | $f(3)=\frac{9}{3}+3-3=3 \quad \mathrm{~min}$ |
| critical $p$ | 1 | $f(1)=9+1-3=7 \quad$ max |
|  | 9 | $f(9)=\frac{9}{9}+9-3=7 \mathrm{max}$ |

The absolute max. is 7 , the abs. max points are: $(1,7)$ and $(9,7)$.
(It's OK that the abs. max. values occur at multiple $x$-values)

The abs. min. is 3 , the abs. min point is: $(3,3)$

