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1.1 INTRODUCTION

Computational Geometry is the field of computer science that is concerned
with algorithmic techniques for solving geometric problems. Geometric prob-
lems arise in innumerable applications, particularly in the fields of Computer
Graphics, Computer-Aided Design and Manufacturing (CAD/CAM), Robotics
and Geographic Information Systems (GIS). A typical example of a fundamen-
tal problem in computational geometry is the computation of the convex hull of
a set of points in d-dimensional space. The convex hull of a set of points is the
smallest convex set containing those points. (Informally stated, a convex set is
such that for any two points in the set, the line connecting those two points is
also contained in the set.)

Recent years have seen rapid advances in parallel algorithm design for prob-
lems in computational geometry. Some of the earliest work in this area was done
by Chow [12] and Aggarwal et. al. [1]. In these papers, the authors gave paral-
lel algorithms for various fundamental problems such as two-dimensional con-
vex hulls, planar-point location, trapezoidal decomposition, Voronoi diagram
of points, triangulation etc., which are known to have sequential run-times of
O(n logn). Most of their algorithms, though in NC, were not optimal in P.T
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bounds and a number of them have since been improved.1 Atallah, Cole and
Goodrich [5] demonstrated optimal deterministic algorithms (O(n) processors
and O(log n) run-time) for many of these problems by applying the versatile
technique of cascading divide-and-conquer and building on data structures de-
veloped in [1]. Cole and Goodrich give further applications of this technique
in [15]. See [6] for a comprehensive survey on deterministic parallel algorithms
for computational geometry. Reif and Sen [38] also obtained optimal random-
ized parallel algorithms for a number of these problems; these algorithms use n
processors and run in O(log n) time with high probability. See [35] for a survey
on the use of randomization in parallel algorithm design.

The important problems of constructing the convex hull of points in three
dimensions and the Voronoi diagram of points in two dimensions , however,
eluded optimal parallel solutions for a long time. Both these problems have
sequential run-times of O(n logn) [17, 19, 24, 32, 43]. Aggarwal et. al. [1]
gave O(log2n) and O(log3n) time algorithms (using O(n) processors) for the
Voronoi diagram and convex hull problems, respectively, and the technique of
cascaded-merging could not be extended to these problems to improve their
run-times [15]. Subsequently, Goodrich [20] has given an algorithm for 3-
dimensional convex hulls that does optimal work, but has O(log2n) run-time,
and Amato and Preparata [4] have described an algorithm that runs in O(log n)
time but uses n1+ǫ processors.

Randomization, however, proves to be very useful in obtaining optimal run-
time as well as optimal P.T bounds. (Sorting can be reduced to these problems,
and hence the best possible run-time will be Θ(log n) on n EREW and CREW
PRAMs [16].2) Note that the lower bound of Ω(n logn) for these problems also
applies to randomized algorithms. In [37], Reif and Sen gave an optimal parallel
randomized algorithm on the CREW PRAM for the construction of the convex
hull of points in three dimensions. Since the problem of finding the Voronoi
diagram of points in two dimensions can be reduced to the three-dimensional
convex hull problem, they also obtained an optimal parallel method for the
former. Their algorithm runs in O(logn) time using O(n) processors, with high
probability, and there are no known deterministic algorithms that match these
bounds. We would like to point out that Levcopoulos, Katajainen and Lingas
[26] gave an optimal expected time parallel algorithm for the Voronoi diagram of
a randomly chosen set of points. However, the randomized algorithms surveyed
here make no assumption about the distribution of the input set.

1NC is the parallel complexity class of problems that can be solved in poly-logarithmic time
using a polynomial number of processors. The P.T bound of a parallel algorithm is simply
the product of the run-time with the number of processors used; this is also referred to as
the work performed by the algorithm. This would be the run-time of a sequential algorithm
that simulates a given parallel algorithm.
2The Parallel Random Access Machine (PRAM) is the synchronous shared memory model of
parallel computation in which all processors have access to a common memory. Concurrent
Read Exclusive Write (CREW) PRAMs allow two or more processors to read a memory
location simultaneously, but do not allow simultaneous writes. EREW PRAMs allow no
concurrent accesses.
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Similarly, an optimal parallel solution to construct the Voronoi diagram of
line segments in the plane also poses difficulties. Furthermore, the randomized
technique presented by Reif and Sen [37] cannot be extended in a straightfor-
ward way to this problem. By designing a new randomized sampling technique
to overcome some of the obstacles presented by the method in [37], Rajasekaran
and Ramaswami [34] give an optimal O(logn)-time randomized parallel algo-
rithm for this problem using O(n) processors. This algorithm is optimal in
P.T bounds and an O(log n) factor improvement in run-time over the previ-
ously best-known deterministic algorithm by Goodrich, Ó’Dúnlaing and Yap
[21], providing further evidence of the usefulness of randomization in obtaining
efficient algorithms. As in the previous case, there are no known deterministic
algorithms that match these bounds.

Parallel randomized techniques have also led to efficient algorithms for higher-
dimensional convex hulls, as shown by Amato, Goodrich and Ramos [3]. In
particular, they demonstrate O(log n)-time randomized parallel algorithms that
perform optimal O(n logn + n⌊d/2⌋) work in order to compute the intersection
of a set of n half-planes in d dimensions (the dual of the problem of computing
the convex hull of n points in d dimensions). Ramos [36] has also shown that
randomized methods can be used to give near-optimal parallel algorithms for
some one-dimensional lower envelope problems. The remainder of this chapter
provides a brief survey of the randomized techniques used to design efficient par-
allel algorithms for some fundamental geometric problems. Section 1.2 gives
all relevant definitions and establishes notation to be used in this chapter.
Section 1.3 discusses the general randomization techniques that have yielded
optimal parallel algorithms for the fundamental geometric problems of three-
dimensional convex hulls, Voronoi diagrams of sets of line segments, and for
higher-dimensional convex hulls. Finally, Section 1.4 describes the optimal
parallel algorithms specifically for each of these three problems.

1.2 PRELIMINARIES AND DEFINITIONS

The use of average-case analysis of algorithms has been in existence for a long
time, where the performance of the algorithm is measured by assuming a certain
distribution on the input. In other words, resource bounds (such as run-time,
space usage, etc.) are given for typical instances of the problem. For example,
it can be shown that Hoare’s quick-sort algorithm performs well on average.
The difficulty of this approach is that it is not always possible to determine
an accurate distribution for the input, and hence to carry out the average-case
analysis. Making an assumption about the distribution of the input may not
always be reasonable.

An alternative method is to introduce randomness into the algorithm itself.
The idea of randomizing an algorithm by using a random number generator
was first put forth independently by Rabin [33] and Solovay and Strassen [42].
It has proved to be an extremely powerful tool in the design of efficient algo-
rithms for a wide variety of problems. A randomized algorithm is one in which
some of the decisions depend on the result of coin flips. The objective of a
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randomized algorithm is to ensure that on any input, the correct output will
be produced with high probability within the stated time bounds. Randomized
algorithms therefore do not make any assumptions about the distribution of
the input. There has been significant interest in such algorithms because for
many applications, randomized algorithms are considerably simpler and more
efficient than their deterministic counterparts, in the sequential as well as par-
allel setting. These algorithms are also more implementable because of their
simplicity. It can be shown that the high probability bounds hold even when
a pseudo-random number generator is used, as is the case on real computers.
Hence randomized algorithms fare well even in practice and for a number of
applications, implementation results have borne out this fact.

A randomized algorithm is one which bases some of its decisions on the
outcomes of coin-flips. The objective of a randomized algorithm is to ensure
that on any input, the correct output will be produced with high probability
within the stated time bounds. Hence there is a very small non-zero probability
that the algorithm may fail (either to produce the correct answer or to stop
within the specified run-time), and this is called the error probability. Let ǫ (ǫ
being very close to 0) be the error probability of a randomized algorithm A.
Then for any input, A will succeed i.e. will run within the stated time bounds
and produce the correct output with probability ≥ (1 − ǫ). Notice that this
probability holds for any input, and the success or failure of the algorithm does
not depend on the input itself. In other words, the analysis of the run-times
or space bounds of such algorithms does not make any assumptions about the
distribution of the input.

There are two types of randomized algorithms, as given below:

1. In the first type of randomized algorithms, the output of the algorithm is
always guaranteed to be correct, but the run-time of the algorithm might
vary. In other words, the run-time of the algorithm is a random variable.
These algorithms are known as Las Vegas algorithms.

2. In the second type of randomized algorithms, the run-time of the algo-
rithm does not vary (i.e. is dependent just upon the input and not on the
coin-flips), but the correctness of the output will hold with a certain high
probability. In other words, the correctness of the output is a random
variable. These algorithms are known as Monte Carlo algorithms.

The algorithms presented in this chapter are Las Vegas algorithms. Given
below is a formal definition of resource bounds for a randomized parallel algo-
rithm.

Definition 1 A randomized parallel algorithm A is said to require resource
bound f(n) with high probability if, for any input of size n, the amount of
resource used by A is at most c̄.α.f(n) with probability ≥ 1 − 1/nα for
positive constants c̄, α (α > 1). Õ is used to represent the complexity bounds of
randomized algorithms i.e. A is said to have resource bound Õ(f(n)).
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Figure 1.1 The convex hull of a set of points in two dimensions

The parallel complexity class RNC is defined in a manner similar to the
class NC. It is the class of decision problems that can be solved by a random-
ized PRAM algorithm in polylogarithmic time using a polynomial number of
processors.

1.2.1 Geometric Definitions and Notation

In this section, we give definitions and notation for the geometric problems
addressed in this chapter. Since most of these problems are in two or three
dimensions, we will restrict ourselves in this section to definitions of relevant
geometric structures in two and three dimensions. This also allows us to in-
troduce the material in a manner that is easier to follow. The reader’s greater
familiarity with the concepts in two and three dimensions will be useful when he
or she reaches Section 1.4.3, which discusses the problem of higher-dimensional
convex hulls. In order to keep the initial presentation simpler, the definitions
relevant to that section will be given there. (All definitions and notation used
here are standard; see e.g. [17, 21, 25, 32, 43]). We will also assume that the
input set of objects is in general position, i.e., that no three are colinear and
no four are cocircular.

Convex Hulls. A region R is said to be convex if for any two points p and q in
R, the line segment from p to q is also contained entirely in R. The convex hull,
CH(S), of a set S of points in two or three dimensions is simply the smallest
convex region that contains the points. Each point of S lies either on the
boundary or in the interior of the convex hull. The points lying on the boundary
of the convex hull are sometimes referred to as the vertices of the convex hull.
See Figure 1.1 for the convex hull of a set of points in two dimensions. The
computational problem for the convex hull is typically to specify the points
lying on the boundary of the convex hull in some pre-specified manner (for
example, the vertices listed in counter-clockwise order for the two-dimensional
convex hull). The concept of convex hulls in two dimensions can be visualized
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as follows: Consider the two-dimensional plane to be the floor and imagine the
input set of points to be nails hammered into the floor at those points. Now
suppose that a rubber-band is stretched all around the nails and then released.
The shape that the rubber-band rests in is the boundary of the convex hull,
with a nail at each vertex of the hull. Typically, CH(S) is used interchangeably
to refer to either the convex hull of S or the boundary of the convex hull,
and the reference will be clear from the context. For a set of points in three
dimensions, the convex hull is a convex polyhedron and each facet (face) of the
polyhedron will be a convex polygon. Under the general position assumption
that no four points are coplanar, each facet will be a triangle.
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half-plane defined by
each line

Shaded regions indicate

Common intersection of half-planes

Figure 1.2 The intersection of a set of half-planes

Another fundamental problem in computational geometry is that of com-
puting the intersection of n half-planes (or half-spaces, in three dimensions).
A half-plane is the set of all points in the plane satisfying the linear inequality
(or constraint) ax + by + c ≤ 0. The common intersection of n half-planes
is the region that satisfies n such linear inequalities simultaneously. See Fig-
ure 1.2 for an illustration of the problem in two dimensions. The problem
in three dimensions is analogous, except that the inequalities are of the form
ax + by + cz + d ≤ 0.

The problems of computing the convex hull of a set of n points and that of
computing the intersection of n half-planes are equivalent to one another due
to the following geometric duality transform: A point (a, b) in the plane is
mapped into a non-vertical line ax + by + 1 = 0, and any line a′x + b′y + 1 = 0
(a line not containing the origin) is mapped into the point (a′, b′). Assume
that the origin lies in the interior of the hull; it is easy to translate the points
so that this is the case: simply take the origin to be the centroid of any three
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Figure 1.3 The nearest point Voronoi diagram of a set of points.

of the input points. Computing the convex hull of a set S of n points can be
reduced to computing the intersection of n half-planes as follows: each point
in S is mapped into a line by using the duality transform and the half-plane
determined by this line is the one containing the origin. It can be shown that
the half-planes that determine the boundary of the intersection are exactly the
dual transforms of the vertices of CH(S). Hence the same algorithm can be
used to compute both the convex hull and the intersection of half-planes. The
algorithms discussed in this chapter will typically be for the latter.

Voronoi Diagrams. Voronoi diagrams are elegant and versatile geometric
structures with numerous applications. The Voronoi diagram or, more accu-
rately, the nearest point Voronoi diagram of a set of objects S is defined as
follows: The Voronoi region associated with an element from S is the set of all
points in the plane that are closer to that element than to any other element in
S. The nearest point Voronoi diagram is the union of all the Voronoi regions.
Figure 1.3 shows the Voronoi diagram of a planar set of points. The Voronoi
region associated with each point of S is a convex region given by the intersec-
tion of half-planes as follows: For each point p and any other point q in S , the
region that is closer to p than to q is the half-plane containing p and bounded
by the straight line bisector of p and q.
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When S consists of a set of points, the Voronoi edges are all straight line seg-
ments, whereas if S consists of line segments, the Voronoi regions are bounded
by parabolic arcs as well as straight line segments and might therefore be non-
convex. A careful definition of the bisector of two line segments is given below,
for which we need to clearly define the distance relation for line segments.

Let S be a set of nonintersecting closed line segments in the plane. Following
the convention in [25, 43], we will consider each segment s ∈ S to be composed
of three distinct objects: the two endpoints of s and the open line segment
bounded by those endpoints. The Euclidean distance between two points p
and q is denoted by d(p, q). The projection of a point q on to a closed line
segment s with endpoints a and b, denoted proj(q, s), is defined as follows:
Let p be the intersection point of the straight line containing s (call this line
↔
s ), and the line going through q that is perpendicular to

↔
s . If p belongs to

s, then proj(q, s) = p. If not, then proj(q, s) = a if d(q, a) < d(q, b)
and proj(q, s) = b, otherwise. The distance of a point q from a closed line
segment s is nothing but d(q, proj(q, s)). By an abuse of notation, we denote
this distance as d(q, s). Let s1 and s2 be two objects in S. The bisector of s1

and s2, B(s1, s2), is the locus of all points q that are equidistant from s1 and
s2 i.e. d(q, s1) = d(q, s2). Since the objects in S are either points or open line
segments, the bisector will be part of either a line or a parabola. The bisector
of two line segments is shown in Figure 1.4aa, and the Voronoi diagram of a
set of line segments is shown in Figure 1.4bb. Clearly if S is a set of points, all
the bisectors are parts of straight lines.

s2

s1

B(c, (a, b)), a parabolic arc

c

d

a

b

B(a, c), a straight line

B(b, (c, d)), a parabolic arc

, an angularB((a, b),(c, d))
bisector(a straight line)

B(b, d), a straight line

Figure 1.4a The bisector of two line segments

Definition 2 The Voronoi region, V (s), associated with an object s in S is
the locus of all points that are closer to s than to any other object in S i.e.
V (s) = {p | d(p, s) ≤ d(p, s′) for all s′ ∈ S}. The Voronoi diagram of
S, Vor(S), is the union of the Voronoi regions V (s), s ∈ S. The boundary
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Figure 1.4b The Voronoi diagram of a set of line segments

edges of the Voronoi regions are called Voronoi edges, and the vertices of the
diagram, Voronoi vertices.

The following is an important and useful property of Vor(S).

Theorem 1 (Lee & Drysdale [25]) Given a set S of n objects in the plane
(here, these objects will either be nonintersecting closed line segments or points),
the number of Voronoi regions, Voronoi edges, and Voronoi vertices of Vor(S)
are all O(n). To be precise, for n ≥ 3, Vor(S) has at most n vertices and at
most 3n − 5 edges.

The problem of computing the Voronoi diagram of a set S of points in two
dimensions can be reduced to the convex hull problem for a set of points in three
dimensions by using the following reduction, as shown by Brown [8]: Assume
that the planar set of points S lies on z = 1 and consider the paraboloid
defined by z = x2 + y2 + 1. Each (xi, yi) in S is mapped onto the point
(xi, yi, xi

2 + yi
2 + 1) on the paraboloid. It can be shown then that the convex

hull of the set of points on the paraboloid, when projected onto the plane z = 1,
yields the Voronoi diagram of S. In fact, this relation between convex hulls and
Voronoi diagrams extends to higher dimensions. In other words, the Voronoi
diagram of a set of points in any dimension d can be obtained from the convex
hull of an appropriately defined set of points in one higher dimension.
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1.3 THE USE OF RANDOMIZATION IN COMPUTATIONAL

GEOMETRY

The technique of randomization has been used to design sequential as well
as parallel algorithms for a wide variety of problems. In particular, efficient
randomized algorithms have been developed for a number of computational
geometry problems. Recent work by Clarkson [13], Clarkson and Shor [14],
Mulmuley [30], and Haussler and Welzl [23] has shown that random sampling
can be used to obtain better upper bounds for various geometric problems
such as higher-dimensional convex hulls, half-space range reporting, segment
intersections, linear programming, etc.

Clarkson and Shor [14] used random sampling techniques to obtain tight
bounds on the expected use of resources by algorithms for various geometric
problems. The main idea behind their general technique is to use random
sampling to divide the problem into smaller ones. The manner in which the
random sample is used to divide the original input into subproblems depends
on the particular geometric problem under consideration. They showed that
for a variety of such problems:

Lemma 1 (Clarkson & Shor [14]) Given a randomly chosen subset R of
size r from a set of objects S of size n, the following two conditions hold with
probability at least 1/2:

(a) the maximum size of a subproblem is O((n/r) log r), and

(b) the total size of all the subproblems is O(n).

A sample that satisfies these conditions is said to be good, and bad other-
wise. The above lemma implies that any randomly chosen sample is good with
constant probability, and hence bad with constant probability as well.

The use of random sampling leads naturally to parallel recursive algorithms:
Each subproblem defined by a random sample is solved recursively and in par-
allel. Typically, the number of processors required to solve each subproblem
(recursively) will be proportional to the size of the subproblem itself. However,
a number of issues relevant to the parallel environment need to be addressed in
order for this approach to result in efficient parallel algorithms. These issues
are discussed in the remainder of this section.

1.3.1 Randomized Techniques for Parallel Algorithm Design

Polling. Clarkson and Shor’s results yield bounds on the expected use of re-
sources, but do not give high probability results (i.e. bounds that hold with
probability ≥ (1 − 1/nα), where n is the input size, and α > 0). Observe that
this fact proves to be an impediment in the parallel environment due to the
following reason [37]: As stated earlier, parallel algorithms for such problems
are typically recursive. For sequential algorithms, since the expectation of the
sum is the sum of expectations, it is enough to bound the expected run-time
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of each recursive step. For recursive parallel algorithms, the run-time at any
stage of the recursion will be the maximum of the run-times of the subprob-
lems spawned at that stage. There is no way of determining the maximum of
expected run-times without using higher moments. Moreover, even if we can
bound the expected run-time at the lowest level of the recursion, this bound
turns out to be too weak to bound the total run-time of the algorithm.

Reif and Sen [37, 38] give a novel technique called polling to tackle this
problem. A parallel recursive algorithm can be thought of as a process tree,
where a node corresponds to a procedure at a particular stage of the recursion,
and the children of that node correspond to the subproblems created at that
stage. The following theorem states the important result that if the time taken
at a node which is at a distance i from the root is O((logn)/2i) with high
probability, then the run-time of the entire algorithm is Õ(logn). Note that
the number of levels in the process tree will be O(log logn).

Theorem 2 (Reif & Sen [38]) Given a process tree that has the property
that a procedure at depth i from the root takes time Ti such that

Pr[Ti ≥ k(ǫ′)iα log n] ≤ 2−(ǫ′)iα log n,

then all the leaf-level procedures are completed in Õ(logn) time, where k and α
are constants greater than zero, and 0 < ǫ′ < 1.

The basic idea of the technique given in [37] is to find at every level of the
process tree, a good sample of size O(nǫ) with high probability (where n can be
thought of as the size of either the original input or the input to a subproblem).
By doing this, they can show that the run-time of the processes at level i of the
tree is O(logn/2i) with high probability and hence the run-time of the entire
algorithm is O(logn) with high probability.

By choosing a number of random samples (say g(n) of them; typically g(n) =
O(logn)), we are guaranteed that one of them will be good with high likelihood.
The procedure to determine if a sample is good or not will have to be repeated
for each of the g(n) samples. However, we would have to ensure that this does
not cause the processor bound of O(n) to be exceeded. This is achieved by
polling i.e. using only a fraction of the input (1/g(n), typically) to determine
the “goodness” of a sample. The idea is that the assessment of a sample (good
or bad) made by this smaller set is a very good estimate of the assessment that
would be made by the entire set. Thus Reif and Sen give a method to find a
good sample efficiently at every level of the process tree, and this idea is useful
for converting expected value results into high probability results.

Two-Stage Sampling. It is important to consider the following side-effect that
occurs in such recursive algorithms: When a random sample is used to divide
the original problem into smaller ones, the total size of the subproblems can
be bounded to only within a constant multiple of n. In a recursive algorithm,
this results in an increase in the total problem size as the number of recursive
levels increases. For a sample size of O(nǫ), the depth of the process tree for a
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A
subproblem

Figure 1.5 Subproblems in “one-dimensional” problems

parallel randomized algorithm would be O(log logn), and even this could result
in a polylogarithmic factor increase in the total problem size.

Observe that the issue of bounding the total size of the subproblems does
not come up in “one-dimensional” problems like sorting because each element
of the input set can lie in exactly one subproblem. This is not the case for prob-
lems such as convex hull or Voronoi diagram construction. This is illustrated in
Figure 1.5, where the numbers that form the random sample are circled. The
other numbers, shown as solid dots, fall in exactly one subproblem (each sub-
problem is defined by two consecutive numbers in the random sample), which
will be solved recursively. In most geometric problems, however, each element
of the input will typically fall in several subproblems. This means that the to-
tal subproblem size is not, in general, exactly equal to the original input size.
Even with a good sample, we can only succeed in bounding the total to within
a constant multiple of the original, which results in a problem size “blow-up”
due to recursive calls.

In [14], Clarkson and Shor get around this problem by using only a constant
number of levels of recursion in their algorithm. They are able to do this
by combining the divide-and-conquer technique with incremental techniques
(which are inherently sequential; see [14] for further details). Reif and Sen’s
[37] strategy to handle this problem is to eliminate redundancy at every level
of the process tree. In other words, since it is known that the final output
size is O(n), it is possible to eliminate those input elements from a subproblem
which do not contribute to the final output. By doing this, they bound the
total problem size at every level of the process tree to be within c′.n for some
constant c′. This step is non-trivial and, in general, avoiding a growth in
problem size in this manner can be quite complicated. Moreover, the strategy
used to eliminate redundancy seems to be very problem-specific.

Rajasekaran and Ramaswami [34] describe a two-stage random sampling
technique, which helps to overcome the problem of increase in total input size
as the algorithm proceeds down the process tree. Their approach gets rid of the
need to eliminate redundancy at each level of the process tree. In other words,
it is not necessary to devise a method to control total problem size at every level
of the process tree. By choosing much larger sized samples (of size O(n/logqn)
for an appropriate q) in the first stage of their algorithm, the polylog factor
increase in processor bound still maintains the total processor bound as O(n)
at this stage. If this larger sized sample is good, it will again divide the original
input into smaller problems of roughly equal size and the total subproblem
size will be O(n). Since the sample size is larger, the subproblem size will be
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relatively small and can be solved by using non-optimal techniques. As before,
to ensure high probability bounds, O(logn) such samples of larger size are
chosen. Consequently, the two-stage sampling approach eliminates the problem
posed by the polylog-factor increase in problem size. (The idea of two-stage
sampling in a somewhat different form was independently discovered by Amato,
Goodrich and Ramos [3], which they called biased sampling.)

In the following section, we elaborate upon these techniques. Even though
these parallel randomized techniques are general, and apply to a wide variety
of problems, they will be discussed with reference to particular problems in
computational geometry. This allows for a clearer exposition on the main
ideas behind the techniques, and we will see how they lead to efficient parallel
algorithms for these fundamental geometric problems.

1.4 APPLICATIONS TO FUNDAMENTAL GEOMETRIC PROBLEMS

1.4.1 Convex Hull of Points in Three Dimensions

The technique of polling is used to give an optimal parallel randomized algo-
rithm on the CREW PRAM for constructing the convex hull of a set of n points
in three dimensions [37]. More accurately, an algorithm for the dual problem
of computing the intersection of a set S of n half-spaces is given. The recursive
parallel algorithm may be informally described as follows: (a) Compute the in-
tersection of a random sample R (of size nǫ, say) of half-spaces and consider a
point p inside it. (b) The intersection of R is a polyhedron composed of facets.
Each of these facets, along with the point p, forms a “wedge”. Observe that the
final result will be a subset of this polyhedron, and only those half-spaces that
intersect the interior of the polyhedron will contribute to the final result. In
particular, each wedge will be intersected by a subset of planes which are pos-
sible contributors to that part of the final polyhedron that lies in that wedge.
Therefore, each wedge defines a subproblem and the set of planes that intersect
each wedge defines the input to the subproblem defined by that wedge. See
Figure 1.6 for an illustration in two dimensions. As seen, each plane (line, in
two dimensions) can intersect a number of wedges and hence may lie in several
subproblems.

As discussed in Section 1.3.1, it is necessary to obtain a good sample R
with high probability at each level of the recursion. This is done by choosing
independently O(logn) samples and observing that there is a high probability
that at least one of them will be good, since there is a constant probability that
a sample will be bad; refer to Lemma 1. Recall that to determine if a sample
is good, we need to

1. Find the maximum size of the subproblems (this must be O(n1−ǫ logn)
for a good sample)

2. Find the total size of all the subproblems (this must be O(n) for a good
sample)
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form the random sample)

One way to do this is to use a search procedure to determine for each half-
plane in S the subproblems in which it lies, i.e. the “wedges” that it intersects.
(We will not go into the details of the search procedure here and refer the
interested reader to [10, 37, 35]). Such a procedure would use O(logn) time
with one processor per half-plane. Since there are O(logn) random samples,
this search procedure would exceed the available resource bounds (the goal
being an O(log n) time algorithm for the intersection of n half-planes using O(n)
processors). To overcome this obstacle, Reif and Sen [37] use the technique of
polling, which can be described as follows: Instead of using the entire input S to
determine the goodness of a sample, determine goodness from only a fraction of
the input. (This is analogous to opinion polls that estimate the opinion of the
population from polls conducted on a sample of the population; hence the term
polling.) We summarize the probabilistic analysis for polling in the following
paragraph, which refers to some basic facts from probability theory and can be
found in any standard text on the subject (see [2, 18, 22], for example).

For each sample Rj(1 ≤ j ≤ b logn, for some constant b), choose c0 ·n/logdn
half-planes randomly from the input (where c0 and d > 2 are appropriately
chosen constants) to determine the goodness of Rj . Suppose Aj

i is the number

of these half-planes that lie in the i-th subproblem given by Rj. Suppose Xj
i is

the actual number of half-planes from S that lie in the i-th subproblem given by
Rj. Then, Aj

i is a binomial random variable with parameters c0n/logdn (which

is the total number of trials) and Xj
i /n (the probability of success of a trial).
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One can then use Chernoff bounds [11, 22] to tightly bound the estimates for
Xj

i . In other words, it is possible to show that

Aj
i logdn/c0c2α ≤ Xj

i ≤ Aj
i logdn/c1α

with high probability (i.e. probability > 1 − 1/nα) for appropriately chosen
constants c1, c2 and α, independent of n. Therefore, one can use

∑
i Aj

i to

obtain high-probability estimates on
∑

i Xj
i , which is used to determine if a

sample is good or not. Since only c0n/logdn planes are used to determine the
goodness of each sample (which takes O(log n) time per plane), and there are
O(logn) samples, this part of the algorithm takes Õ(log n) time with O(n)
processors. We thus have the following lemma.

Lemma 2 (Reif & Sen [37]) Given a method of choosing random samples
that expect to be good, the polling algorithm gives a method to efficiently obtain
a random sample that has a high probability of being good.

The above method does not yet yield an optimal solution to the convex hull
problem: it is also necessary to control the total size of all subproblems at each
level of recursion. As discussed in Section 1.3.1, since the total subproblem size
is bound to only within a constant multiple of n, this could result in a polylog
factor problem size “blow-up”, causing an increase in processor bound. In [37],
the authors address this issue by exploiting the geometric properties of the
specific problem. They carry out an exhaustive case analysis in order to remove
from each subproblem all half-planes that are redundant. In other words, they
remove from each subproblem those half-planes that cannot possibly form part
of the output. By doing this, they ensure that the total problem size at each
level of recursion is at most c′n for some constant c′. Finally, by using a careful
processor allocation strategy, they obtain an optimal algorithm for constructing
the convex hull of a set of n points in three dimensions on the CREW PRAM.
An alternative approach, called pruning, to control total problem size at each
level of recursion in this algorithm is given by Amato, Goodrich and Ramos
in [3]. This approach is used to obtain an optimal randomized parallel algorithm
for this problem with the same bounds and on the EREW PRAM.

Theorem 3 (Reif & Sen [37], Amato, Goodrich & Ramos [3]) The in-
tersection of n half-spaces in three dimensions can be computed in O(logn) time
with high probability using O(n) processors on the CREW PRAM [37], or on
the EREW PRAM [3].

The technique in [37] of controlling total problem size at each level of recur-
sion depends very much on the particular problem at hand, and such an ap-
proach is not always fruitful for more complex geometric problems. Therefore,
we have deliberately avoided going into the details of this part of the algorithm
for the convex hull problem, because in the following section we discuss a gen-
eral strategy for dealing with the problem of increase in total subproblem size.
This technique, which uses sampling at two stages of the algorithm, has been
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used to obtain an optimal parallel randomized algorithm for the Voronoi dia-
gram of line segments [34]. It has also been used, along with other techniques,
for designing efficient algorithms for higher-dimensional convex hulls [3].

1.4.2 Voronoi Diagrams

The optimal randomized parallel algorithm for three-dimensional convex hulls
immediately gives an optimal algorithm for constructing the Voronoi diagram
of a set of n points in the plane. As mentioned at the end of Section 1.2.1,
this is due to the reduction from higher-dimensional convex hulls to Voronoi
diagrams in one lower dimension. However, no such reduction is at hand for
the problem of computing the Voronoi diagram of a set of line segments. This
section describes the main ideas behind an optimal randomized parallel solution
for this problem, which is the only known optimal solution. This technique can
also be applied for Voronoi diagram construction of planar sets of points, giving
an alternative optimal solution for the problem.

The algorithm for Voronoi diagram construction also uses the familiar ran-
dom sampling approach. Let S = {s1, s2, . . . , sn} be the input set of line
segments in the plane and let R be a random sample from S. Let |R| = nǫ

for some 0 < ǫ < 1. The sample R will be used to divide the original input
S into smaller subproblems so that each of these can be solved in parallel. The
subproblems are defined as follows: Each Voronoi edge of Vor(R) defines a sub-
problem region. Rather than giving a rigorous definition of how these regions
are defined, we refer to Figure 1.7 and appeal to intuition. Consider any point
p on a Voronoi edge e of R. This point p defines a circle Cp such that
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1. Cp has an empty interior (i.e., no objects of R intersect its interior) and

2. either two (when p lies in the interior of the Voronoi edge) or three (when p
is a vertex of the Voronoi edge) objects of R are incident on the boundary
of Cp.

The subproblem region defined by each Voronoi edge e is simply the collec-
tion of such circles (and their interiors) given by the points on the edge. This
is the shaded region in Figure 1.7. Any line segment that intersects this region
will belong to the subproblem defined by e. Observe that these are the line seg-
ments whose final Voronoi regions might intersect e. It follows from Clarkson
and Shor’s [14] random sampling lemma that there is a fixed probability that
such a sample will be good. In other words, the subproblem regions defined
in the above manner will give subproblems of maximum size O(n1−ǫ log n) and
total size O(n).

The overall approach can then be outlined as follows:

Construct the Voronoi diagram of R using some brute force technique (any
approach that uses O(logn) time and a polynomial number of processors
will do). Call this diagram Vor(R). We use Vor(R) to divide the original
problem into smaller problems which will be solved in parallel.

Process Vor(R) appropriately in order to efficiently find the input set of
line segments for each of these subproblems.

Recursively compute (in parallel) the Voronoi diagram of each subprob-
lem.

Obtain the final Voronoi diagram from the recursively computed Voronoi
diagrams.

By choosing an appropriate ǫ, we can ensure that the first step is done in
O(logn) time using n processors. Randomized search techniques can be used
to efficiently find the subproblems defined by a chosen sample; in particular,
in O(log n) time with high probability using O(n) processors. Keep in mind
that, just as in the convex hull problem of the previous section, it is necessary
to find a good sample with high probability at each level of recursion, which
is done using polling. Parallel merge techniques can be used to compute the
Voronoi diagram from recursively computed Voronoi diagrams and this can be
done O(logn) time using O(n) processors. Thus, the recurrence relation for
the run-time is T (n) = T (n1−ǫ) + Õ(log n), which solves to Õ(log n).

However, the description of the algorithm that we have given here is in-
complete. In particular, we need to tackle the problem of total problem size
“blow-up” during recursive calls, and a technique called two-stage sampling is
used to achieve this. This technique uses random sampling at two stages of
the algorithm and, in essence, eliminates the need to control total problem size
at each level of recursion. The remainder of this section summarizes this tech-
nique. (The other details of the algorithm for Voronoi diagram construction,
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in particular the search and merge steps, will not be discussed here and the
interested reader is referred to [34].)

Suppose that after O(log logn) levels of recursion, the total size of all the
subproblems at the leaf level of the process tree is at most O(n.logcn), for some
constant c. Then we have the following lemma:

Lemma 3 (Rajasekaran & Ramaswami [34]) The Voronoi diagram of a
set of n line segments can be constructed in O(log n) time with high probability
using nlogcn processors, where c > 0 is a constant.

The above lemma suggests that we might choose samples of size much larger
than O(nǫ). In particular, such a sample S′ could be of size O(n/logqn), q
being a constant integer > c. If S′ is a good sample, then it too will divide the
original input into smaller problems of roughly equal size. Since this sample
size is larger, the subproblems defined by this sample can be solved using any
non-optimal technique (that uses a linear number of processors and polyloga-
rithmic time). It is still necessary, however, to find a good sample S′ with high
probability. As before, this is done by choosing O(log n) such samples, at least
one of which will be good with high probability.

Let N = n/logqn. Let S1, S2, . . . , Sd log n be the O(logn) samples of size
N each, where d is a positive integer chosen according to the desired success
probability at this stage of the algorithm. Since the size of Si is large, we
cannot afford to construct Vor(Si) using a brute force technique (as we can
do with samples of size O(nǫ)). Instead, we will run the randomized parallel
algorithm on each Si. Notice that we would only need O(n) processors in order
to do this. The outline of the algorithm is given as follows.

N := n/logqn.

Pick d logn random samples S1, S2, . . . , Sd log n of size N each.

Let I be a random subset of the input set S such that |I| = n/logq̄n, q̄
being a constant < q.

S′ := Pick the Right Sample(S1, S2, . . . , Sd log n, I).

Partition the entire input S according to the good sample S′.

Solve each subproblem using a non-optimal technique.

Merge the results.

The function Pick the Right Sample picks a good sample from the Si.
This is done by constructing the Voronoi diagram for each Si (using a random-
ized parallel algorithm) and computing the total subproblem size for each Si in
order to test the sample for goodness. Note that the testing of the samples Si is
done with respect to a restricted input set (polling). Let Ri

1, Ri
2, . . . , Ri

a log N
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be the O(logN) random samples, each of size N ǫ, chosen from Si. In the follow-
ing, it can be shown that every one of Vor(Si) will be constructed in O(logn)
time with high probability. The function is given as follows:

Function Pick the Right Sample(S1, S2, . . . , Sd log n, I);

Do the following in parallel for each Si (1 ≤ i ≤ d logn).

1. (a) Choose a log n random samples Ri
1, R

i
2, . . . , R

i
a log n each of size

N ǫ from the set Si.

(b) Construct the Voronoi diagram of each Ri
j (1 ≤ j ≤ a log N)

using a brute force technique (that runs in logarithmic time with
a polynomial number of processors)

(c) Determine which of these Ri
j is a good sample for Si (Note:

Polling will not be necessary here due to the smaller input size
|Si|). Suppose Ri

j′ is one such good sample; with high probabil-
ity, there will be such a j′.

(d) Use Ri
j′ to divide Si into smaller subproblems.

(e) Recursively compute (in parallel) the Voronoi diagram of each
subproblem.

(f) Obtain the final Voronoi diagram Vor(Si) from these recursively
computed Voronoi diagrams.

2. Compute the total subproblems size when restricted to I (this is
polling).

Return the best Si; with high probability there will be such an Si.

By developing efficient search strategies to determine subproblems, and to
merge the recursively computed Voronoi diagrams, an optimal parallel random-
ized algorithm for the Voronoi diagram of line segments in the plane is obtained
on the CRCW PRAM3 and thus we have the following.

Theorem 4 (Rajasekaran & Ramaswami [34]) The Voronoi diagram
of a set of n non-intersecting line segments in the plane can be computed in
O(logn) time with high probability using O(n) processors on the CRCW PRAM.

Note that in order to maintain a processor bound of O(n), the larger sam-
ple sizes used in the first stage of the algorithm necessitate fast methods to
determine subproblems. In other words, we cannot afford to have a parallel
algorithm that uses a polynomial number of processors. Whereas in [37], since
the sample size is always O(nǫ), an appropriate ǫ can be chosen such that the
processor bound of O(n) is maintained, we do not have this flexibility. This is

3In this PRAM model, concurrent reads and concurrent writes are both allowed. There are
many protocols for resolving write conflicts in an algorithm. In this case, they are resolved
arbitrarily i.e., an arbitrary processor is allowed to succeed.
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because of the large sample size during the first stage of sampling. The inter-
ested reader is referred to [34] for the details of the search and merge steps. The
two-stage sampling approach is general enough to apply to other problems as
well. For instance, Reif and Sen’s algorithm [37] for three-dimensional convex
hulls can be simplified considerably by applying the idea of two-stage sampling.
It also applies to the Voronoi diagram of points in the plane, thus giving an
alternative optimal randomized parallel algorithm for this problem.

1.4.3 Higher-Dimensional Convex Hulls

The higher-dimensional convex hull problem refers to the problem of computing
the convex hull of a set of n points in an arbitrary d-dimensional space (denoted
by Ed). Assume for the remainder of the section that the point set contains the
origin. The dual relationship between convex hulls of point sets and the inter-
section of half-planes holds in any dimension. Therefore, the higher-dimensional
convex hull problem is equivalent to computing the intersection of n half-spaces
(all containing the origin). A hyperplane is the set of all d-dimensional points
(x1, x2, . . . , xd−1, xd) that satisfy the equality adxd + ad−1xd−1 + . . . + a2x2 +
a1x1 + a0 = 0 and a half-space in d dimensions is the set of all points that
satisfy the inequality adxd + ad−1xd−1 + . . . + a2x2 + a1x1 + a0 ≤ 0. Com-
puting the intersection of half-spaces in high dimensions is an important and
fundamental problem in its own right. Furthermore, as mentioned earlier, their
relationship to Voronoi diagrams in one lower dimensions imply that efficient
algorithms for the former will be immediately applicable to the latter. The con-
vex hull of n points in Ed has size Θ(n⌊d/2⌋) in the worst case and constructing
it takes time Ω(n log n+n⌊d/2⌋) [17]. One way of measuring the performance of
a higher-dimensional convex hull algorithm is in terms of the worst-case size of
the output (i.e. the hull); the results summarized here use this measurement.

The first sequential algorithms were given by Seidel [39, 40]. An algorithm
optimal in even dimensions was given in [39] and ran in O(n logn + n⌈d/2⌉)
time and a O(n⌊d/2⌋ log n) algorithm was given in [40]. Optimal randomized
solutions were given by Clarkson and Shor [14] and by Seidel [41]. More re-
cently, optimal deterministic solutions have been given by Chazelle [9] and
Brönnimann, Chazelle and Matous̆ek [7]. Research on parallel algorithms for
higher-dimensional convex hulls has begun more recently, and some of the recent
results are summarized below. We will discuss only the randomized algorithm
for higher-dimensional convex hulls in [3], which is also the best known result
to date.

Amato, Goodrich and Ramos [3] give O(log n) time randomized parallel al-
gorithms on the EREW PRAM, using optimal O(n logn + n⌊d/2⌋) work with
high probability, for the dual problem of constructing the intersection of n half-
spaces in d-dimensional space. As in the algorithms discussed in Sections 1.4.1
and 1.4.2, this algorithm is also based on parallel divide-and-conquer tech-
niques, where the d-dimensional space is divided into cells and the half-spaces
that intersect the cells define the subproblems. However, the issue of bound-
ing the total subproblem size to only within a constant factor of the original
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problem size comes up here as well, causing an unacceptable increase in pro-
cessor bound. A technique called biased sampling, which is similar to two-stage
sampling (and was discovered independently around the same time), is used to
avoid the total problem size increase at each level of the recursion. By combin-
ing this with other sophisticated geometric techniques (in particular, by using a
parallel analog by Goodrich [20] of Matoušek’s shallow-cutting lemma [27, 28]),
they obtain the stated result. We give below a high-level description of this
method and outline the main ideas. Several details will not be discussed and
the reader is encouraged to look up [3, 20].

First we describe how the subproblems are defined: Given a set S of n hy-
perplanes in Ed, a 0-shallow 1/r-cutting for S is a partition of Ed into simplices
(informally, a tetrahedron in three dimensions is analogous to a triangle in two
dimensions and a simplex is the generalization of a tetrahedron to arbitrary
dimensions) such that each simplex is intersected by at most n/r hyperplanes
from S, and the collection of simplices contains the intersection of S. Given
a 0-shallow 1/r-cutting for S of size O(r⌊d/2⌋) (where r = nǫ, where ǫ is an
appropriately defined constant), the next step will be analogous to the three-
dimensional case: Each simplex defines a subproblem whose input is the set of
hyperplanes that intersect that simplex. Each subproblem is then solved recur-
sively. The recursion bottoms out when the problem size is a constant, at which
point the problem can be solved using some obvious brute-force technique. As
before, the number of levels of recursion will be O(log log n). It is shown in [3]
that finding a 0-shallow 1/r-cutting takes O(logn) time on the EREW PRAM
using O(nr⌊d/2⌋+c′) work, for some constant c′ > 1. It follows therefore that

Lemma 4 (Amato, Goodrich & Ramos [3]) The intersection of a set of
n half-spaces in Ed can be computed in O(logn) time O(n⌊d/2⌋logcn) work on
the EREW PRAM, where c > 0 is some constant.

An optimal algorithm for the intersection of half-spaces in high dimensions
is obtained by running the above non-optimal algorithm, which uses too many
processors, on very large samples (in a manner similar to the two-stage sampling
technique used for the Voronoi diagram). In particular, take a random sample
R of size r = n/logc0n for some constant c0 > 0. From [3, 14], it follows
that with a constant probability, R is a good sample. This means that the
the simplices determined by the intersection of the half-spaces in R form a
0-shallow, 1/r-cutting for S and the cutting has size O(r⌊d/2⌋). The work-
inefficient algorithm described above is now run on R (this is referred to as
the bias in the sampling in [3]) and the intersection of the half-spaces in R is
obtained. By choosing c0 large enough, this step of the algorithm takes O(logn)
time using O(n⌊d/2⌋/log n) work.

In order to obtain high-probability bounds, O(log n) such random samples
are chosen and the above procedure is carried out on each of them. This takes
O(logn) time using O(n⌊d/2⌋) work with high probability. If a random sample
R is indeed a good sample, it is a 1/r-cutting of size O(r⌊d/2⌋) and so each
simplex in the intersection of R intersects a set T of at most n/r hyperplanes
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from S. For each such T , one can then use a non-optimal algorithm that runs
in poly-logarithmic time but does optimal work with high-probability. Refer
to [3, 9] for the specifics of this step. It follows that

Theorem 5 (Amato, Goodrich & Ramos [3]) The intersection of n half-
spaces in Ed can be computed in O(logn) time using O(n⌊d/2⌋) work, for d ≥ 4,
with high probability on the EREW PRAM.

1.5 SUMMARY

For some problems, randomization offers a simpler and more elegant alternative
to a deterministic solution. But more importantly, randomization proves to be a
powerful tool in the design of efficient parallel algorithms for some fundamental
problems in computational geometry, whereas there are no known deterministic
counterparts that match these bounds. In particular, this chapter covers the
techniques of polling and two-stage sampling, and their use in the design of
optimal parallel solutions for the convex hull of points in three dimensions
and the Voronoi diagram of line segments in the plane. Furthermore, the use
of randomization to obtain an optimal parallel algorithm for the important
problem of higher-dimensional convex hulls is also discussed. Efficient solutions
to numerous geometric problems can be obtained from the parallel algorithms
for these fundamental geometric problems. For instance, the three-dimensional
convex hull algorithm immediately leads to optimal solutions for the Voronoi
diagram of points in the plane, the all-points nearest neighbor problem and
the Euclidean minimum spanning tree problem. Similarly, the algorithm for
the Voronoi diagram of line segments gives optimal parallel solutions for the
minimum weight spanning tree, nearest neighbor, largest empty circle and the
all-pairs nearest neighbor for a set of line segments. In addition, the Voronoi
diagram of line segments is used to plan the motion of an object (a disc, for
example) from one point in the plane to another while avoiding polygonal
obstacles (see [31] for details) and is also used to find the maximum-flow path
of a liquid flowing through a polygonal pipe with a uniform capacity defined
on its interior [29].

The selection of the above results is meant to provide a flavor of parallel
randomized techniques for some fundamental geometric problems. The list is
certainly not exhaustive, and several pertinent results have not been discussed
since they lie outside the scope of this brief survey. It is hoped, however, that
the selected results demonstrate the effectiveness of randomization in parallel
algorithm design for problems in computational geometry.

References

[1] A. Aggarwal, B. Chazelle, L. Guibas, C. Ó’Dúnlaing, and C. K. Yap. Par-
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