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Theorem 3.3: The percolate-up-and-down algorithm gives a quadrangulation of a simple n-gon with the mini-
mum number of outer Steiner points required to quadrangulate the given triangulation. In particular, at most

outer Steiner points are used. Furthermore, this algorithm runs in O(n) time.

We also introduce another variant of this algorithm, called theQ-percolation algorithm, which converts a
triangulation to a quadrangulation while adding Steiner pointsinside the polygon (we call theseinner Steiner
points), with at most one outer Steiner point. Inner Steiner points are an important consideration when the goal is to
quadrangulate a simple polygon without modifying the boundary of the polygon too much. We prove the following
result.

Theorem 3.4: The Q-percolation algorithm computes a quadrangulation of a simple n-gon with at most
inner Steiner points and at most one outer Steiner point in O(n) time.

We conclude this section by mentioning an important feature of the Q-percolation algorithm, which is that it
can be used to obtain quadrangulations of any triangulation (that is, not necessarily triangulations of simple poly-
gons). LetT be any triangulation, as in the definition given at the beginning of this section. We can quadrangulate
T by constructing a spanning tree of the dual graph ofT, and then applying the Q-percolation algorithm to the re-
sulting tree. Observe that the method used in the percolate-up-and-down algorithm is not particularly useful for the
spanning tree of the dual graph ofT. This is because the leaves of the spanning tree do not necessarily correspond
to boundary triangles and hence unmatched leaves cannot be dealt with in the straightforward manner of the perco-
late-up-and-down algorithm.

 It follows therefore that we can quadrangulate triangulated polygons with holes as well as triangulated line
segments. The number of Steiner points required to quadrangulate these triangulations is , wheret is the num-
ber of triangles in the triangulation.

4.  Triangulated Sets of Points

Given a triangulation of a set ofn points, the Q-percolation algorithm will find a quadrangulation using at
mostn - 2 Steiner points (since the number of triangles in a triangulation ofn points is≤ 2n - 4). Note that a set of
points can always be quadrangulated with at most one Steiner point, since it is always possible to find a Hamiltonian
triangulation of a set of points [BT95], [AHMS94]. On the other hand, here we are interested in converting agiven
triangulation to a quadrangulation.

In the remainder of this section we address the problem of obtaining astrictly convex quadrangulation of a set
of points by adding a number of Steiner points. A solution for the problem of obtaining a strictly convex quadran-
gulation for a polygon by adding Steiner points is given in [ELOSU92], where it is shown that anyn-gon can be
decomposed into at most    strictly convex quadrilaterals. In the same paper, the following Lemma is
proven:

Lemma 4.1: [ELOSU92] Let F be a pentagon with one Steiner point s placed on its boundary. F can be divided
into at most five strictly convex quadrilaterals by adding at most three Steiner points in the interior of F and no other
point on the boundary.

LetT be a hamiltonian triangulation of a set of pointsS(see [AHMS94, BT95]). If we consider six consecutive
triangles in the path, we can use Lemma 4.1 to show that these triangles can be divided into at most ten strictly con-
vex quadrilaterals by adding at most seven Steiner points in the interior. We thus obtain the following result, which
we state without proof.

Theorem 4.2: Let S be a set of n points with h vertices on the convex hull. A strictly convex quadrangulation of S
can be obtained by adding at most  i.e., less than7n/3 Steiner points and obtaining at most

 i.e., less than10n/3 quadrilaterals.

We remark thatn/2 Steiner points are sometimes necessary in order to obtain a convex quadrangulation of a
set ofn points.

n 3⁄

n 2⁄

t 2⁄

5 n 2–( ) 3⁄

7 2 n 1–( ) h–( ) 6⁄
10 2 n 1–( ) h–( ) 6⁄



- 4 -

matching of the dual graph. Each edge inM gives us a quadrangle and since M is perfect, there are no left-over tri-
angles in the triangulation. It follows that we can obtain a quadrangulation ofT without using Steiner points. This
implies the following proposition.

Proposition: A triangulation can be quadrangulated without Steiner points if and only if the dual graph of the
triangulation admits a perfect matching.

As we will see in the remainder of this paper, this relation between quadrangulations and matchings gives us
a unified approach to handle the problem of quadrangulating (while possibly adding Steiner points) triangulations.
In the rest of this section, we give algorithms which allow us to obtain a quadrangulation from any given triangula-
tion in linear time. We will also give bounds on the number of Steiner points that may be necessary for the quadran-
gulation.

We now give the description of simple linear-time algorithms, which we call thepercolation algorithms, that
give us maximum matchings for binary trees. Note that we focus on binary trees because the graphs that are of in-
terest to us are either duals of triangulations of polygons or the spanning trees of dual graphs of more general trian-
gulations. The nodes in dual graphs have degree at most 3. (Some of these techniques will generalize to general trees,
but we will not go into that here). Interestingly, the methods described here provide us with an alternative proof of
Lemma 2.1. More importantly, the technique behind the percolation algorithms can be used to obtain quadrangula-
tions of triangulations. In particular, we will be able to give upper bounds on the number of Steiner points for ob-
taining quadrangulations from triangulated polygons with holes and a triangulated set of line segments.

Let T = (V, E) be a binary tree, and without loss of generality, we assume thatT is rooted at a degree 1 node
(this makes no difference to our algorithm, but makes the discussion simpler). Leth be the number of levels inT,
with the root being at level 1. Consider now the following matching algorithm, which we call thepercolate-up al-
gorithm. LetVh be the set of nodes at levelh of T. Clearly all these nodes are leaves (note that not all leaves ofT are
in Vh). Let  v ∈ Vh and letpar(v) representv’s parent. We have the following cases:

Case 0: If par(v) is a node of degree 1, then T consists of two nodes joined by an edge. In this case, matchv and
par(v). Note that ifpar(v) is NIL (i.e.v does not have a parent) then T consists of just a single node and we leave it
unmatched.

Case 1: par(v) is a node of degree 2. In this case, matchv andpar(v).

Case 2: par(v) is a node of degree 3 andv is the left child ofpar(v). In this case, matchv andpar(v).

Case 3: par(v) is a node of degree 3 andv is the right child ofpar(v). In this case, leavev unmatched.

For eachv ∈ Vh, perform the above matching step and then pruneT in the following way: If Case 0 applies,
deletev andpar(v) from T. If Case 1 applies, deletev andpar(v) from T. Note that for every Case 2, there must be
a Case 3. Hence if Case 2 applies, we deletev, par(v) andv’s sibling (v andpar(v) are matched, andv’s sibling re-
mains unmatched). After the matching and pruning steps have been carried out for all v ∈ Vh, we have a new tree
whose height is eitherh - 1 orh - 2. LetT(1) denote this pruned version ofT. Repeat the above matching and pruning
step on all nodes at the lowermost level ofT(1), and obtain a new pruned tree denoted byT(2).Continue this step with
successively pruned treesT(3), T(4) and so on until we obtainT(k), whereT(k) is the empty tree. Note thatk ≤ h. By
using properties of maximum matchings we prove the following theorem.

Theorem 3.1: The percolate-up algorithm finds a maximum matching for the tree T.

The percolate-up algorithm gives a maximum matching in which some of the unmatched nodes are internal.
However, we are interested in a maximum matching in which the unmatched nodes are at the leaves. This is because,
for simple polygons, the quadrangulation can then be obtained immediately by adding a Steiner point for each un-
matched node (which corresponds to a triangle in the triangulation). We can show that the maximum matching given
by the percolate-up algorithm can be modified appropriately so that all unmatched nodes are now at the leaves.

Theorem 3.2: There exists a maximum matching for a tree T such that all the unmatched nodes are leaves.

 Furthermore, we modify the percolate-up algorithm to give a linear-time algorithm for finding a maximum
matching with all unmatched nodes at the leaves. We call this thepercolate-up-and-down algorithm. Observe that
this method gives the minimum number of outer Steiner points that are required to quadrangulate the given triangu-
lation, since percolate-up-and-down finds a maximum matching for the dual tree. We thus have the following result.
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gon.

To see that these Steiner points can be located in O(n) time, consider the following:P can be triangulated in O(n)
time by Chazelle’s algorithm [Ch91]. The triangulated polygon can then be three-colored in linear time with the al-
gorithm of Kooshesh and Moret [KS92]. The edge on which a guard is placed gives us the fan-arme outside which
we place the Steiner point.To find an appropriate placement of the Steiner point, we may triangulate the simple poly-
gon(s) that lie outsideP and within the convex hull ofP, which can also be done in linear time. The Steiner point
for e can be placed anywhere inside the triangle incident one (and outsideP). If e is an edge of the convex hull, then
it is not difficult to find a placement for the Steiner point. It follows therefore that all Steiner points can be located
in O(n) time.

■

3.  Quadrangulations and Matchings

Consider a planar subdivision which has the property that every face is classified in one of three ways: anout-
er face, anobject face or ahole. The outer face is the only unbounded face. Bounded faces that do not belong to the
object are called holes. By atriangulation, we mean a planar subdivision in which every object face is a triangle and
every edge of the subdivision belongs to at least one object face. From now on, when we use the phrase “triangle of
the triangulation”, we refer exclusively to an object face of the triangulation. Thedual graph of a triangulation is
the graph in which there is a node for every triangle of the triangulation, and an edge between two nodes if the cor-
responding two triangles share a side.

Given a graphG = (V, E) (possibly weighted), amatching M onG is a set of edges such that no two of them
have a common vertex. Themaximum cardinality (weight)matching problem is that of finding a matching of max-
imum size (weight). A maximum cardinality matching is also referred to simply as a maximum matching. Aperfect
matchingis a matching such that the cardinality ofM is |V |/2.

When we obtain a quadrangulation from a triangulation, we would like to add as few Steiner points as possi-
ble. Consequently, the idea of pairing up triangles in a triangulation to form quadrangles immediately implies that
our goal is to find the maximum possible number of such pairings. This corresponds exactly to the maximum car-
dinality matching problem for the dual graph of the triangulation.

 If a triangulationT can be quadrangulated without Steiner points, it means that we can eliminate some of the
edges of the triangulation so that the resulting set of object faces are quadrangles. In other words, all the quadrangles
are formed by pairs of triangles that share a side. In the dual graph, consider the setM of edges defined by these
pairs of triangles.M is a matching and is perfect (since T can be quadrangulated). Conversely, letM be a perfect

v2 v4

v10

vn - 1
vn

v7

vn - 2

v1

Figure 2.1: A quadrangulation of this polygon requires outer Steiner
                 points. This polygon admits only one triangulation (as shown).

n 3⁄
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triangulation, we point out a powerful connection between quadrangulations andperfect matchings of the dual
graphs of the triangulations in question. We obtain a variety of characterizations for when a triangulation (of some
structure such as a polygon, set of points, line segments or planar subdivision) admits a quadrangulation without
using Steiner points (or with a bounded number of Steiner points). We also investigate the effect of demanding that
the Steiner points be added in the interior or exterior of a triangulated simple polygon. Furthermore, we propose
efficient algorithms for accomplishing these tasks. For example, we show that a triangulated polygon may be qua-
drangulated in O(n) time using at most outer Steiner points and that there exist polygons that require this
many outer Steiner points. We give a method that quadrangulates a triangulated simple polygon with the minimum
number of outer Steiner points required for that triangulation. We also show that a triangulated simple polygon may
be quadrangulated with at most  Steiner pointsinside the polygon and at most one outside. We are also able
to optimize certain properties of quadrangulations (such as convexity) by applyingmaximum weighted matching al-
gorithms on the dual graphs of the given triangulations and associating suitable weights with each edge in the dual
graph. In this extended abstract, due to space limitations, we illustrate a portion of our results and either sketch
proofs or omit them altogether.

2.  Triangulated Polygons

As pointed out in the previous section, not all polygons admit a quadrangulation. In such cases, it is necessary
to add “Steiner points” (i.e. points that are not vertices of the original polygon) in order to quadrangulate the poly-
gon. We defineouter Steiner pointsto be Steiner points that are added outside the simple polygon. Each outer Stei-
ner pointp is affiliated with an edgee of the original polygon and modifies the boundary of the original polygon in
the following way: the edgee is deleted and two new edges are created by connectingp to the two endpoints ofe.
Notice that we do not allow deletion of vertices of the original polygon. In this and the following section, we address
the question of obtaining a quadrangulation of a simple polygon after it has been triangulated. The following theo-
rem gives us bounds on the number of outer Steiner points that are required to quadrangulate a polygon.

Theorem 2.1: outer Steiner points are always sufficient, and sometimes necessary, to quadrangulate a
simple polygon of n vertices. Furthermore, these Steiner points may be located in O(n) time.

Proof: This observation follows immediately from Fisk’s proof [Fi78] for Chvátal’s art gallery theorem [Chv75].
In his proof, Fisk showed that every triangulation of ann-gonP can be partitioned into at most fans (a fan
is a triangulation where one vertex, called thefan center, is shared by all the triangles). Observe that there is always
a decomposition such that these fans start and end at edges of the polygon; we will refer to such edges ofP asfan-
arms. It follows that a fan-arm can appear in only one fan.

Consider now a vertexv of P that is a fan center. Vertexv defines a sequence of triangles in the triangulation.
These triangles can be paired up to form quadrilaterals. If the number of such quadrilaterals is odd, we will be left
with one triangle, one of whose edges is a fan-arme. One of the endpoints ofe is v; let the other be v’. We can convert
this to a quadrilateral by adding a Steiner pointp outsidee, deleting the edgee and connectingp to the two vertices
v andv’.

Thus we need to add at most one Steiner point per fan. Since P can be partitioned into at most  fans, it
follows that  outer Steiner points are always sufficient to quadrangulate a simple polygon.

In order to see that  outer Steiner points are sometimes necessary to quadrangulate a polygon, consider
the polygon in Figure 2.1 (this is similar to an example of a polygon that requires  guards [Chv75]). There
is only one way to triangulate this polygon, as shown in the figure. There are only three ways in which fans may be
chosen:

• If v1 is chosen as one of the fan centers, then the other fan centers must be the verticesv4, v7, v10,..... vn-2. These
fans consist of single triangles and hence they will each need one outer Steiner point for the quadrangulation.

• If v3, v6, v9,.....vn-3, vn are chosen as the fan centers, each of the fans has an odd number of triangles, and hence
each of them will need one outer Steiner point for the quadrangulation.

• If v2, v5, v8,....,vn-1 are chosen as the fan centers, we have a case similar to the above.

We see that in each of the above cases,  outer Steiner points are necessary in order to quadrangulate the poly-

n 3⁄

n 2⁄

n 3⁄

n 3⁄

n 3⁄
n 3⁄

n 3⁄
n 3⁄

n 3⁄
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CONVERTING TRIANGULATIONS TO QUADRANGULATIONS*

Suneeta Ramaswami1, Pedro Ramos2, Godfried Toussaint1

1.  Introduction

A central problem in the manufacturing industry concerns the simulation of a wide variety of processes, such
as fluid flow in injection molding, by solving complicated systems of partial differential equations [Bo79]. To make
this task easier, the method offinite elements is usually employed [Ho88]. In this approach a solid model of the ob-
ject under study (or its bounding surface) is divided up into small pieces determined by data points sampled on the
object’s surface.

In scattered bivariate data interpolation one is required to construct a bivariate function (or surface) that fits
data that has been collected at sampled points on the plane [Sc79]. One application of such a problem in the area of
computer cartography is the construction of approximate models of terrains from data consisting of the elevation at
a given finite set of sampled points [FFP85]. To facilitate this process the data points in the plane are used to divide
it into small pieces. Each such piece then gives rise to a surface patch and these surface patches are finally “stitched”
together to form the desired approximation to the surface.

One fundamental geometric problem in applications such as those mentioned above is the construction of a
mesh from the given set of data points. For several decades the favored mesh used in such applications has been the
triangular mesh or triangulation of the data points [DFP85]. In a triangular mesh the finite elements are, as the name
implies, triangles. As a result, triangulations of sets (such as sets of points, line segments, polygons, etc.) have been
studied in depth and much is known about them [BE92]. However, in some situations it is preferable that the finite
elements bequadrangles (quadrilaterals) instead of triangles. For example, it has recently been shown that quadran-
gulations have several advantages over triangulations for the problem of scattered data interpolation [La94], [LS94].
Unfortunately, not much is known about quadrangulations of point sets. In fact, if edges are allowed to be inserted
only between the given data points (i.e., no extra points called Steiner points are permitted) then not all sets of points
admit a quadrangulation. The characterization of quadrangulations of point sets and the design of algorithms for
their computation has only just begun [BT95].

Since little is known about computing quadrangulations, whereas triangulations have been well studied for a
long time [Be92], engineers have devoted some attention to the problem ofconverting triangulations to quadrangu-
lations [He83], [JSK91]. These methods however are heuristic, conceptually rather cumbersome and may require
many Steiner points. For example, Johnston et al. [JSK91] integrate several heuristics into a system that automati-
cally converts a triangular mesh into a quadrangular mesh which runs inO(n2) time and may add more thann Steiner
points in the process. No attempts appear to have been made to optimize either the number of Steiner points or the
complexity of the corresponding algorithms.

We remark that quadrangulations of polygons, on the other hand, have been investigated in the computational
geometry literature for some time in the different context of guarding or illumination problems. First we note that,
as with points, arbitrary simple polygons do not always admit a quadrangulation. In fact it is not difficult to construct
polygons that requireΩ(n) Steiner points in order to complete a quadrangulation. On the other handorthogonal
polygons (also isothetic or rectilinear) always admit a quadrangulationwithout Steiner points. In fact such polygons
always admit quadrangulations in which every quadrangle isconvex. This was first proved by Sack & Toussaint
[ST81] for star-shaped polygons and subsequently generalized to arbitrary simple orthogonal polygons by Lubiw
[Le85] and Sack & Toussaint [ST85] among others.

In this paper we study the problem of converting triangulated domains to quadrangulations, under a variety
of constraints, from a formal perspective. For the simple case when no Steiner points are allowed, i.e., when it is
asked whether a quadrangulation can be obtained simply by removing a carefully selected subset of edges of the

*   Research of the first author was supported by NSERC Grant no. OGP0046218. Research of the second author was supported
by NSERC Grant no. OGP0009293 and FCAR Grant no. 93-ER-0291. (1) School of Computer Science, McGill University,
Montreal, Canada, (2) Dept. of Applied Mathematics, Universidad Politecnica de Madrid, Spain.


