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Abstract

Given a con�guration C of geometric objects in R

2

(called the input con�guration), a target con�gu-

ration T of geometric objects in R

1

, and a class S of allowable sectioning lines we consider in this paper

many variations on the following problem: \Is there a line S 2 S such that the section S\C is equivalent

by rigid motion to the target T ?"
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1 Introduction

Mathematical Tomography deals with a set of \techniques of reconstructing internal structures in a body

from data collected by detectors (sensitive to some sort of energy) outside the body" [22]. For example, one

technique in computerized tomography consists on measuring the attenuation of X-rays between multiple

pairs of points outside the body, each pair giving positions for a source and a detector, from that the Radon

transform is estimated, and the density distribution approximated. Mathematical methods in tomography

constitute a rich area of research whose basic results go back to the beginning of the century (Radon

proved his inversion formula in 1917), but that has become especially active in the last two decades, as new

technologies and the spreading of computers have made possible many ways of gathering data about bodies

as well a powerful capability of handling the information [10, 21, 22, 23, 24, 29].

When density functions are replaced by geometric objects (for example we have a convex polytope in-

stead of a body with non-constant internal density) then geometric information { shape, measure, ... { is

the detected data, and we arrive to the area of Geometric Tomography [14, 15], a topic recently emerged as

a well de�ned domain of research, which is described by Gardner in [15] as \the area of mathematics dealing

with the retrieval of information about a geometric object from data about its sections, or projections or

both". As an example of how geometry changes the situation, let us recall the fact that a planar density dis-

tribution is determined by its X-rays taken in every direction, while Gardner and McMullen [18] proved that

a selected set of four directions determine an homogeneous convex body. Certainly Geometric Tomography

and Computerized Tomography overlap in several problems, and there are also many related domains, such

as Stereology, Mathematical Morphology, Image Analysis, Pattern Recognition and Geometric Probing.

Computational Geometric Tomography is a natural name for an area grouping results in which the em-

phasis is on the algorithmic aspect of the problems above. It is illuminating to distinguish �rst between

direct and inverse problems. In direct problems the input is a geometric object and the scope is to e�ciently

compute a section or a projection with prescribed properties. In inverse problems, which are at the core of

Mathematical Tomography, sections and/or projections are the input and the aim is to determine, verify,

reconstruct or approximate the object, or some of its properties. Direct problems, besides its intrinsical
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interest, provide often the basis for solving the inverse ones. Both kind of problems have attracted a lot of

attention in Computational Geometry, a few examples follow.

In [27] McKenna and Seidel gave algorithms for minimizing or maximizing the shadow of a polyhedron

by projection, a topic also studied by Burger, Gritzmann and Klee in [8]. In [2] Avis et al. compute the

maximum-area horizontal cross-section of a convex polytope. Bose et al. in [6] and G�omez, Hurtado and

Toussaint in [20] consider the problem of computing \nice" orthographic projections of objects in 3-space,

according to di�erent criteria of \niceness". The computation of shadows has been also studied by Chazelle,

Edelsbrunner and Guibas in [9], Ponce et al. in [30, 31] and Amenta and Ziegler in [1]; these papers contain

also combinatorial results and pointers to many related works.

Boissonnat in [5], Barequet and Sharir in [3] and Gitlin, O'Rourke and Subramannian in [19] studied the

problem of reconstructing polyhedra from parallel slices by interpolation, a problem in which fairly extensive

work has been done. The compatibility of projections of point sets (whether or not they can come from the

same object) is considered in [20]. Geometric Probing, as described by Skiena in [32], \considers problems

of determining a geometric structure or some aspect of that structure from the results of a mathematical

or physical measuring device, a probe". This area of research, which is certainly related to Geometric

Tomography, has attracted a lot of attention [11, 13, 25, 26, 28].

In spite of that amount of research several basic facts remain unexplored, a fact which is not strange

given the huge variety of problems and tools involved.

In this paper we study some fundamental 2D recognition problems involving objects and arrangements

that are typical in Computational Geometry (3D analogous results are described in a companion paper [7]).

Speci�cally, given a con�guration C of geometric objects in R

2

(called the input con�guration), a target

con�guration T of geometric objects in R

1

, and a class S of allowable sectioning lines we consider many

variations on the following problem: \Is there a line S 2 S such that the section S \ C is equivalent by rigid

motion (translation plus rotation) to the target T ?" In the a�rmative, the algorithms will report all the

solutions, if there are a �nite number. When there is an in�nite set of parallel sectioning lines that give the

same combinatorial solution, only one of them will be reported. This framework is denoted throughout the

paper as the sectioning problem.

The classes of input con�gurations that we will consider are sets of line segments (where the target is a

set of points)), sets of lines (where the target is a set of points), sets of discs (where the target is a set of

intervals), and sets of polygons (where the target is a set of intervals). We consider all lines, parallel lines

and lines through a point, as allowable sectioning classes. We use n to denote the number of objects in C,

and k for the number of objects in T .

The following table summarizes our results.

Input allowable sectioning hyperplanes

dimension Input con�guration (target) horizontal origin any

line segments (points) O(n

2

) O(n

2

) O(n

3

)

lines (points) �(n logn) O(n

2

) O(n

3

)

2D polygons (intervals) O(n

2

) O(n

2

) O(n

3

)

discs (intervals) O(n

2

) O(n

2

) O(n

3

)

2 Preliminary results

In this section we will prove two lemmas that are used in subsequent sections of this paper. Assume we

have a line l containing three points a, b and c, and three lines l

a

, l

b

and l

c

. These three lines are �xed,

but the line l can be rotated and translated. We are interested in determining the number of ways the line

l can be placed with its points a, b and c on the three lines l

a

, l

b

and l

c

respectively. For lines in general

position the number of placements is at most 2, but in some degenerate cases the number can be in�nite.

For example when the three lines are parallel, the number of placements is either zero or in�nite. If two of

the lines are parallel, but the third has a di�erent direction, then the number of placements is at most 2.

All other cases follow immediately from our �rst lemma below. The second lemma of this section applies to

a similar situation.
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Lemma 2.1 Let l

a

and l

b

be two non-parallel lines. Let l be a line containing three points a, b and c. If

we consider all the placements of l such that a and b lie on l

a

and l

b

respectively, then the collection of

corresponding placements of the point c forms an ellipse.

PROOF

Let the point c be determined by the condition c = a + s �

�!

ab, where s is a �xed real number di�erent

from 0 and from 1. Let k be the distance between a and b. Without loss of generality assume that l

a

is the

x-axis and that l

b

is the line x = my, for some constant m. Pick any point (�; 0) in l

a

and any point (m�; �)

in l

b

and consider these points as candidate positions for a and b; the corresponding position for c would be

the point (x

c

; y

c

) = (�; 0) + s(m� � �; �) = ((1� s)�+ms�; s�). From this we get

� =

x

c

�my

c

1� s

; � =

y

c

s

:

But the candidates for a and b give a true placement if and only if they are at distance k apart, i.e. if and

only if (��m�)

2

+ �

2

= k

2

; by substitution we get the locus

�

sx

c

�my

c

s

2

� s

�

2

+

�

y

c

s

�

2

= k

2

for the placements of c, which is an ellipse as claimed. 2

Lemma 2.2 Let l

a

and l

b

be two lines. Let c

a

and c

b

two circles bounding disjoint discs, and let p be a

point, p =2 l

a

\ l

b

. Consider a line l containing two points a and b separated by a distance k. The line l can

be rotated and translated, but all the other objects are �xed. Then: i) there are at most four placements of l

such that l contains p, l

a

contains a and l

b

contains b; ii) there are at most two placements of l such that l

contains p, c

a

contains a, c

b

contains b, and all the points of l \ c

a

and l \ c

b

lie between a and b.

PROOF

(i) If l

a

and l

b

are parallel, the result obviously holds, so without loss of generality assume that p is

the point (0; 0), l

a

is the line y = 1 and l

b

is the line x = cy + d. A candidate placement for l as the line

x = my through (0; 0) produces the point (m; 1) in l

a

and the point (

md

m�c

;

d

m�c

) in l

b

, which corresponds to

a placement for a and b if and only if the distance between them is k, hence we get the equation

�

m�

md

m� c

�

2

+

�

1�

d

m� c

�

2

= k

2

;

which can be expressed as

(m

2

+ 1)(m� c� d)

2

� k

2

(m� c)

2

= 0 ;

a degree four polynomial from which we obtain at most four values for m.

(ii) We adopt here a more synthetic approach. Consider the distance d

V

(p; C) from a point p external to

a disc to the \visible" portion V of the bounding circle C, and the distance d

H

(p; C) from p to the \hidden"

portion H of the circle (Fig. 1a). When plotted with respect to the polar angle, d

V

(p; C) gives a downwards

convex arc and d

H

(p; C) gives an upwards convex arc.

Now consider for example the case in which the rays from p intersect �rst c

a

(Fig. 1b) and look at the

distances from p. A feasible placement for l occurs when d

H

(p; c

b

) � d

V

(p; c

a

) = k, a fact that in the plot

corresponds to an intersection point of d

H

(p; c

b

) with a copy of d

v

(p; c

a

) translated vertically upwards a

distance k (Fig. 1c), and there are at most two such points. Other cases are handled similarly.

2

3 Two dimensional problems

The classes of input con�gurations that we will consider are sets of line segments (where the target is a

set of points)), sets of lines (where the target is a set of points), sets of polygons (where the target is a

set of intervals), and sets of discs (where the target is a set of intervals). Each of these classes of input

con�gurations is treated in a separate subsection below.

3



c a

c b

d  V

d  H
d  (p,c  )H b

d  (p,c  )aV

(a)

pp

d

angle

(c)

H

V

(b)

Figure 1: Proof of Lemma 2.2, part (ii).

3.1 Input con�guration: set of non-crossing line segments

In the �rst three theorems we look at the case of non-crossing line segments i.e. line segments that may

intersect each other only in their endpoints. Therefore the results also apply to sets of non-intersecting

polygons.

Theorem 3.1 The following sectioning problem can be solved in O(n

2

) time:

Input con�guration: A set of n non-crossing line segments in R

2

.

Target con�guration: A set of k points in R

1

.

Allowable sections: Horizontal lines.

PROOF

1. Sort the points in T . Let p

0

, p

1

; � � � ; p

k�1

denote the sorted points. Compute the distances between

consecutive points.

2. Let b

i

denote the bottom y-coordinate of line segment i, and t

i

denote its top y-coordinate. Compute

b

i

and t

i

for all line segments. Sort the list of all values b

i

and t

i

and de�ne a horizontal slice as the

set of all horizontal lines between consecutive values in this sorted list.

3. Sort the list of line segments in each horizontal slice. By processing the horizontal slices from top to

bottom this step can be done in O(n

2

) time.

4. In each horizontal slice, �nd two neighbouring line segments that are non-parallel, line segments l

i

and l

i+1

say. Let �

0

be the distance between the corresponding points p

i

and p

i+1

in T and let �

1

be

the distance between the corresponding points p

k�1�i

and p

k�2�i

. Determine the two positions of the

sectioning line with the correct distance �

0

or �

1

between l

i

and l

i+1

. Verify in linear time whether or

not the candidate sectioning lines are equivalent to T . If all lines in the horizontal slice are parallel,

then either all horizontal lines in this slice are correct sectioning lines, or none are, which can be veri�ed

in linear time.

5. For each horizontal line on the boundary of a horizontal slice, verify in linear time whether or not it is

equivalent to T .
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Since there are a linear number of horizontal slices, this algorithm requires O(n

2

) time. 2

Theorem 3.2 The following sectioning problem can be solved in O(n

2

) time:

Input con�guration: A set of n non-crossing line segments in R

2

.

Target con�guration: A set of k points in R

1

.

Allowable sections: Lines through the origin.

PROOF

1. Sort the points in T . Let p

0

, p

1

; � � � ; p

k�1

denote the sorted points. Let � be the distance between p

0

and p

k�1

.

2. For each line segment, compute the lines l

i

and t

i

that pass through the origin and the lower and top

endpoints of the segment respectively.

3. Sort the t

i

's and l

i

's and de�ne an interval as the set of lines through the origin between consecutive

lines in this sorted list.

4. Sort the list of line segments in each interval. By processing the interval consecutively this step can

be done in O(n

2

) time.

5. In each interval compute the locations with a correct value for �. From Lemma 2.2 we know that

there are at most a constant number of such locations in each interval. Test each candidate in linear

time.

6. For each line l

i

and t

i

, verify in linear time whether or not it is equivalent to T .

Since there are a linear number of lines l

i

and t

i

, this algorithm requires O(n

2

) time. 2

Theorem 3.3 The following sectioning problem can be solved in O(n

3

) time:

Input con�guration: A set of n non-crossing line segments in R

2

.

Target con�guration: A set of k points in R

1

.

Allowable sections: Any line.

PROOF

Sort the points in T . Let p

0

, p

1

; � � � ; p

k�1

denote the sorted points. We �rst determine whether there is

a sectioning line equivalent to T that does not pass through an endpoint of a line segment. We will solve

this problem by mapping points (a; b) to a line in dual space with equation y = ax� b. Each line segment in

primal space is represented in the dual space by a collection of lines through a single point, resulting in an

area usually called a bow tie [4]. The combinatorial complexity of the resulting arrangement of all bow ties

in dual space is O(n

2

). Assume the target contains k points. We traverse the arrangement in dual space and

maintain a sorted list of corresponding line segments in primal space. For each area that is the intersection

of k bow ties, there is a corresponding collection of k line segments in the primal space that can be stabbed

by a line. For each such collection of k line segments, we either discover that all line segments are parallel

or �nd three line segments l

0

, l

1

and l

i

that are not all three parallel to each other. From Lemma 2.1 we

derive that in the latter case there are at most two lines that can stab the k line segments such that the

distances between the intersection points of the three lines l

0

, l

1

and l

i

and the sectioning lines are equal to

the distances between p

0

; p

1

and p

i

. Also there are at most two sectioning lines that give distances equal

to the distances between p

k�1

; p

k�2

and p

k�1�i

. If all lines segments are parallel, we verify whether or not

there is a sectioning line that matches T . Since each veri�cation step can be done in linear time, the overall

complexity of this part of the algorithm is O(n

3

).

Sectioning lines equivalent to T that do pass through an endpoint of a line segment can be found by

applying the O(n

2

) algorithm of the previous lemma, using the endpoints of the line segments as the origins

of the sectioning lines. Since there are a linear number of endpoints, the overall complexity of this step

remains O(n

3

). 2
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3.2 Input con�guration: set of lines

The following theorem shows that there is an O(n logn) algorithm if the lines are non-parallel.

Theorem 3.4 The following sectioning problem can be solved in O(n logn) time:

Input con�guration: A set of n non-parallel lines in R

2

.

Target con�guration: A set of k points in R

1

.

Allowable sections: Horizontal lines.

PROOF

Sort the target points. Let p

0

; p

1

; � � � ; p

k�1

denote the sorted points. Compute the diameter �, the

distance between p

0

and p

k�1

. Compute the left and right envelopes of the line arrangement (by halfplane

intersection). Both steps use O(n logn) time.

Find the candidate positions for the sectioning line with the correct value for �. It is not hard to see

that there are at most two such positions for the diameter of the sectioning lines is a unimodal function.

Hence the two positions can be found by binary search. We check each one in O(n logn) time to see if we

get our target set of points. 2

If we allow parallel input lines, we can still solve the above problem in O(n logn) time if k = n. We

may �nd an in�nite number of candidate positions for the sectioning line with the correct value for �.

If that occurs, there are two lines, l

0

and l

n�1

say, that intersect all candidate sectioning lines in points

corresponding to p

0

and p

n�1

(or p

n�1

and p

0

). These two lines l

0

and l

n�1

are parallel. If all input lines

are parallel, we may have zero or an in�nite number of correct positions for the sectioning line, which we

can verify in O(n logn) time. Otherwise we remove from the set of input lines all lines that are parallel to

l

0

(but not l

0

itself). We can verify that the corresponding points on T exist in the list p

0

; p

1

; � � � ; p

n�1

(or

in the list p

n�1

; p

n�2

; � � � ; p

0

). If they do not all exist, there is no correct position for the sectioning line. If

they do exist, we remove these points from T and repeat this algorithm, with the added restriction that the

intersection of l

0

with the sectioning line should correspond to p

0

(or p

n�1

) on T . In this second iteration,

there can at most be two positions where the points on the sectioning line have the correct diameter. So the

overall complexity of the algorithm is O(n logn).

If k < n, we do not know whether an O(n logn) algorithm exists. We can prove a lower bound, which

matches the complexity of the algorithm when k = n or the lines are non-parallel:

Theorem 3.5 The following sectioning problem requires 
(n logn) time:

Input con�guration: A set of n lines in R

2

.

Target con�guration: A set of k points in R

1

.

Allowable sections: Horizontal lines.

PROOF

We prove the theorem by reduction from Uniform Gap: given a set X of n real numbers, X =

fx

0

; � � � ; x

n�1

g, and a positive value � 2 R, it takes 
(n logn) time to decide whether or not the gap

between each pair of consecutive numbers in X is �. The main idea of the reduction is to construct a set of

input lines and a set of target points from the set X , such that the uniform gap problem can be answered

by solving the sectioning problem.

As input con�guration consider the n lines through the origin and the points (i; 1), i = 1; : : : ; n. As

target con�guration, simply consider the set X � R. Without loss of generality, we can assume that

x

0

� x

i

� x

n�1

for all i = 1; � � � ; n � 2. If you �nd that the target X matches the arrangement, check

whether or not x

n�1

� x

0

= (n � 1)�. If so, the answer to the uniform gap problem is yes, otherwise, the

answer is no. 2

Theorem 3.6 The following sectioning problem can be solved in O(n

2

) time:
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Input con�guration: A set of n lines in R

2

.

Target con�guration: A set of k points in R

1

.

Allowable sections: Lines through the origin.

PROOF

First, construct the arrangement formed by the input lines, in O(n

2

) time. Sort the target points p

0

,

p

1

; � � � ; p

k�1

and compute the diameter �, the distance between p

0

and p

k�1

.

Consider the diameter of any section whose section line contains the origin. The points realizing this

diameter will be from (radially opposite) edges on the outer envelope of the input arrangement. By Lemma

2.2 any pair of radially opposite lines on the outer envelope can give rise to a constant number of candidate

sections.

There are at most O(n) such opposite pairs, and they can be found in O(n) time from the arrangement

by a traversal of the outer envelope. From the opposite pairs, we construct the O(n) candidate sections, and

then test each section to see if it is similar to the target. This test can be performed by walking the zone of

the section line in the input arrangement (in O(n) time), seeing if the distance between consecutive points

is the same as in the sorted target set.

Since we do an O(n) test for O(n) candidate sections, and have O(n

2

) preprocessing, we have spent

O(n

2

) time. 2

Theorem 3.7 The following sectioning problem can be solved in O(n

3

) time:

Input con�guration: A set of n non-parallel lines in R

2

.

Target con�guration: A set of k points in R

1

.

Allowable sections: Any line.

PROOF

First, construct the arrangement formed by the input lines, in O(n

2

) time. Sort the points in T and let

p

0

, p

1

; � � � ; p

k�1

denote the sorted points. Let �

i

be the distance between p

i

and p

i+1

. We �rst assume that

n = k.

For each unbounded cell C in the arrangement we repeat the following algorithm. Let the edges in the

arrangement forming the unbounded cell C be the 0-level edges. De�ne an i-level edge as follows: draw a

line segment from a point on the interior of the edge to C in such a way that it does not intersect a vertex

in the arrangement; the number of edges intersected by this line segment is i. From [12] we know that the

combinatorial complexities of the sets of 0-, 1- and 2-level edges are linear. Consider sectioning lines that

originate in C and pass through a 2-level edge e. Because there are 2 lines between e and C, there are at

most two di�erent 1-level edges intersected by these sectioning lines. From Lemma 2.1 we derive that each

one of these two 1-level edges give rise to at most two positions for the sectioning line such that it gives

the correct values for �

0

and �

1

. For each candidate we traverse the arrangement in linear time and verify

whether or not it is equivalent to T . This part of the algorithm requires O(n

2

) time for each cell C, resulting

in on overall complexity of O(n

3

).

If k < n then the sectioning line is parallel to one of the input lines or intersects at least one vertex in

the arrangement. The �rst case can be solved by applying the O(n logn) algorithm of Theorem 3.4 for n

possible directions. For the second case, let p

i

be the �rst point on T that is the intersection of the sectioning

line and a vertex of the arrangement. If i > 2 then the above algorithm will �nd the sectioning line. If i � 2

then the O(n

2

) algorithm of Theorem 3.6 can be applied to all the vertices in the 2-, 1- and 0-levels. 2

As is the case with Theorem 3.4, the above theorem holds if there are parallel lines in the input set,

provided that n = k. The only case for which the algorithm has to be modi�ed is when we �nd a line

intersecting three parallel 0-level, 1-level and 2-level edges that give the correct values for �

0

and �

1

. In that

case, there are two possible orientations for the sectioning line, but an in�nite number of positions. First

we can �nd all lines parallel to the �rst three edges and verify that the resulting intersection points with

the sectioning lines exist in T . If they do, we can remove these points from T and now use the diameter �

of the remaining points in T to �nd at most 2 locations for the sectioning line for each of the two possible

orientations. So this modi�ed step can still be executed in linear time.
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3.3 Input con�guration: set of disjoint discs

Theorem 3.8 The following sectioning problem can be solved in O(n

2

) time:

Input con�guration: A set of n disjoint discs in R

2

.

Target con�guration: A set of k intervals in R

1

.

Allowable sections: Horizontal lines.

PROOF

1. Compute �, the diameter of the set of intervals in T .

2. Let b

i

denote the bottom y-coordinate of disc i, and t

i

denote its top y-coordinate. Compute b

i

and t

i

for all discs. Sort the list of all values b

i

and t

i

and de�ne a horizontal slice as the set of all horizontal

lines between consecutive values in this sorted list.

3. Sort the list of discs in each horizontal slice. By processing the horizontal slices from top to bottom

this step can be done in O(n

2

) time.

4. In each horizontal slice there are at most two candidate sectioning lines with the correct diameter �.

Verify in linear time whether or not the candidate sectioning lines are equivalent to T .

5. For each horizontal line on the boundary of a horizontal slice, verify in linear time whether or not it is

equivalent to T .

Since there are a linear number of horizontal slices, this algorithm requires O(n

2

) time. 2

Theorem 3.9 The following sectioning problem can be solved in O(n

2

) time:

Input con�guration: A set of n disjoint discs in R

2

.

Target con�guration: A set of k intervals in R

1

.

Allowable sections: Lines through the origin.

PROOF

1. Let � be the diameter of the intervals in T .

2. For each disc, compute lower and top tangent line slopes l

i

and t

i

(lines, not half lines).

3. Sort the t

i

's and l

i

's and de�ne an interval as the set of lines through the origin between consecutive

lines in this sorted list.

4. Sort the list of discs in each interval. By processing the interval consecutively this step can be done in

O(n

2

) time.

5. In each interval compute the locations with a correct value for �. From Lemma 2.2 we know that

there are at most two such locations in each interval. Test each candidate in linear time.

6. For each line l

i

and t

i

, verify in linear time whether or not it is equivalent to T .

Since there are a linear number of lines l

i

and t

i

, this algorithm requires O(n

2

) time. 2

Theorem 3.10 The following sectioning problem can be solved in O(n

3

) time:

Input con�guration: A set of n disjoint discs in R

2

.

Target con�guration: A set of k intervals in R

1

.

8



Allowable sections: Any line.

PROOF

Sort the intervals on T and let �

0

and �

1

be the lengths of the �rst two intervals. We �rst assume that

there is no interval on T of length 0. We will solve this problem by mapping points (a; b) to a line in dual

space with equation y = ax� b. It can be shown that a disc in primal space maps to the set of lines enclosed

in the region between two hyperbolic curves [4]. The combinatorial complexity of the resulting arrangement

of all hyperbolic areas in dual space is O(n

2

). Assume the target contains k intervals. We traverse the

arrangement in dual space and maintain a sorted list of corresponding discs in primal space. For each area

that is the intersection of k hyperbolic areas, there is a corresponding collection of k discs in the primal

space that can be stabbed by a line. For each such collection of k discs we examine the eight sectioning lines

whose intersection with the �rst two or the last two discs in the collection have the correct lengths �

0

and �

1

.

Since the veri�cation steps can be done in linear time, the overall complexity of this part of the algorithm is

O(n

3

).

If T has intervals of length 0, we also have to consider the edges of the arrangement in dual space. Since

there are O(n

2

) edges, this does not increase the asymptotic running time of the algorithm. 2

3.4 Input con�guration: set of disjoint polygons

Since a polygon is a set of line segments that intersect each other only in their end points, the following

three theorems follow immediately from the previous theorems dealing with non-crossing line segments.

Theorem 3.11 The following sectioning problem can be solved in O(n

2

) time:

Input con�guration: A set of n disjoint polygons in R

2

.

Target con�guration: A set of k intervals in R

1

.

Allowable sections: Horizontal lines.

Theorem 3.12 The following sectioning problem can be solved in O(n

2

) time:

Input con�guration: A set of n disjoint polygons in R

2

.

Target con�guration: A set of k intervals in R

1

.

Allowable sections: Lines through the origin.

Theorem 3.13 The following sectioning problem can be solved in O(n

3

) time:

Input con�guration: A set of n disjoint polygons in R

2

.

Target con�guration: A set of k intervals in R

1

.

Allowable sections: Any line.
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