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Given a polygon P in the plane, there are many elementary problems,
such as deciding whether or not a given point p belongs to P, computing
the supporting lines of P from an external point p, or finding the minimum
circle that encloses P, that, in spite of their apparent simplicity, are funda-
mental pieces of many different applications, from clicking with a mouse on
a computer icone, to visualizing objects in computer graphics or detecting
collisions in robotics. As a consequence, these problems have been largely
studied, and the obtained results are well known (see [7] or any other text-
book). They are not all of the same complexity, but most of them can be
solved very efficiently, specially when the involved polygons are known to
be convex.

Nevertheless, most of the solution algorithms strongly rely on the order
of the list of vertices of the polygons, and not much has been said for other
situations, such as the case in which the polygons under consideration are
given as the convex hull of a set of not ordered and possibly redundant
points (this case is considered in a companion work). In this paper we study
the case, that appears to be very natural, in which the polygons are given
by a set of linear restrictions, i.e. by a possibly redundant intersection of
halfplanes. There is not need of much justification of the claim that these
problems are very natural, for they modelize a great number of real problems
in which a set of linear restrictions appear as constraining the freedom of
the solution.

Given a set H = {Hy,...,Hy,} of halfplanes, we consider the polygon
P(H) = N, H;. We want to solve decision, computing and optimization
problems, related to one or several such polygons in the plane. Obviously,
we could always “construct” the polygons, that is, obtain the ordered lists
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of their vertices from the sets of halfplanes that define the polygons, and
then apply the well known algorithms to solve the problems for the “or-
dered” polygons. But the complexity of such a procedure would always be
Q(nlogn), for the reconstruction of the polygons cannot be done more ef-
ficiently. The question is then to find out which problems can be solved in
optimal ©(n) time, and which have complexity ©(nlogn), hence subsuming
that of the polygon construction.

Examples of problems that can be solved in optimal ©(n) time, involving
one single polygon, are:

— deciding whether or not a point lies in a polygon;

— deciding wheter or not a line intersects a polygon and, if it does not,
detecting on which side of the line lies the polygon;

— computing the two supporting lines of a polygon from an external point;
— finding the minimum distance to a polygon from an external point;

— finding the maximum vertical chord of a polygon;

— finding the largest inscribed circle in a polygon;

and involving two polygons:

— deciding whether or not two polygons intersect;

— finding a separating line of two disjoint polygons;

— computing the two common external tangents of two disjoint polygons;
— computing the two separating tangents of two disjoint polygons;

— finding the minimum distance between two disjoint polygons.

Examples of problems that have complexity ©(nlogn) include:

— finding a diametral pair of points in a polygon;

— find the minimum enclosing circle of a polygon;

— find a pair of points at maximum distance between two polygons.

Most of the algorithms that solve these problems in a positive way, are
based on a prune-and-search strategy. In fact, some of the problems enu-
merated above were solved by Megiddo [5, 6] and Dyer [2, 3] as a by-product
of their solution to the linear programming problem.

The solutions we propose apply an oracle that allows to discard a con-
stant fraction of the halfplanes H; in linear time. Recursively applied, the
algorithm ends by finding the solution in linear time. In most of the cases, it
is possible to obtain an oracle that relies on the solution of a linear program-
ming problem in a convenient direction, in order to ensure that a significant
number of input elements will be eliminated. This direction is usually found
by computing a median value that can be obtained in linear time by any of
the known algorithms [1, 4]. As for the linear programming problem, both
algorithms from [5, 8] can be used. Notice that Megiddo’s algorithm for
linear programming does not require much more than median computing.
So, it seems interesting to obtain for our problems a modified solution, in
which the oracle uniquely relies on median computing.

As for the problems that have complexity Q(nlogn), we offer some ex-
amples, and also some hints on how to detect if a problem falls in this class.



Finally, it is important to notice that the technique developped in this

work can be extended to three-dimensional problems, optimally solving anal-
ogous problems for polyhedra defined by intersection of halfspaces.
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