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Given a polygon P in the plane, there are many elementary problems,

su
h as de
iding whether or not a given point p belongs to P , 
omputing

the supporting lines of P from an external point p, or �nding the minimum


ir
le that en
loses P , that, in spite of their apparent simpli
ity, are funda-

mental pie
es of many di�erent appli
ations, from 
li
king with a mouse on

a 
omputer i
one, to visualizing obje
ts in 
omputer graphi
s or dete
ting


ollisions in roboti
s. As a 
onsequen
e, these problems have been largely

studied, and the obtained results are well known (see [7℄ or any other text-

book). They are not all of the same 
omplexity, but most of them 
an be

solved very eÆ
iently, spe
ially when the involved polygons are known to

be 
onvex.

Nevertheless, most of the solution algorithms strongly rely on the order

of the list of verti
es of the polygons, and not mu
h has been said for other

situations, su
h as the 
ase in whi
h the polygons under 
onsideration are

given as the 
onvex hull of a set of not ordered and possibly redundant

points (this 
ase is 
onsidered in a 
ompanion work). In this paper we study

the 
ase, that appears to be very natural, in whi
h the polygons are given

by a set of linear restri
tions, i.e. by a possibly redundant interse
tion of

halfplanes. There is not need of mu
h justi�
ation of the 
laim that these

problems are very natural, for they modelize a great number of real problems

in whi
h a set of linear restri
tions appear as 
onstraining the freedom of

the solution.

Given a set H = fH

1

; : : : ;H

n

g of halfplanes, we 
onsider the polygon

P (H) = \

n

i=1

H

i

. We want to solve de
ision, 
omputing and optimization

problems, related to one or several su
h polygons in the plane. Obviously,

we 
ould always \
onstru
t" the polygons, that is, obtain the ordered lists
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of their verti
es from the sets of halfplanes that de�ne the polygons, and

then apply the well known algorithms to solve the problems for the \or-

dered" polygons. But the 
omplexity of su
h a pro
edure would always be


(n logn), for the re
onstru
tion of the polygons 
annot be done more ef-

�
iently. The question is then to �nd out whi
h problems 
an be solved in

optimal �(n) time, and whi
h have 
omplexity 
(n logn), hen
e subsuming

that of the polygon 
onstru
tion.

Examples of problems that 
an be solved in optimal �(n) time, involving

one single polygon, are:

{ de
iding whether or not a point lies in a polygon;

{ de
iding wheter or not a line interse
ts a polygon and, if it does not,

dete
ting on whi
h side of the line lies the polygon;

{ 
omputing the two supporting lines of a polygon from an external point;

{ �nding the minimum distan
e to a polygon from an external point;

{ �nding the maximum verti
al 
hord of a polygon;

{ �nding the largest ins
ribed 
ir
le in a polygon;

and involving two polygons:

{ de
iding whether or not two polygons interse
t;

{ �nding a separating line of two disjoint polygons;

{ 
omputing the two 
ommon external tangents of two disjoint polygons;

{ 
omputing the two separating tangents of two disjoint polygons;

{ �nding the minimum distan
e between two disjoint polygons.

Examples of problems that have 
omplexity �(n log n) in
lude:

{ �nding a diametral pair of points in a polygon;

{ �nd the minimum en
losing 
ir
le of a polygon;

{ �nd a pair of points at maximum distan
e between two polygons.

Most of the algorithms that solve these problems in a positive way, are

based on a prune-and-sear
h strategy. In fa
t, some of the problems enu-

merated above were solved by Megiddo [5, 6℄ and Dyer [2, 3℄ as a by-produ
t

of their solution to the linear programming problem.

The solutions we propose apply an ora
le that allows to dis
ard a 
on-

stant fra
tion of the halfplanes H

i

in linear time. Re
ursively applied, the

algorithm ends by �nding the solution in linear time. In most of the 
ases, it

is possible to obtain an ora
le that relies on the solution of a linear program-

ming problem in a 
onvenient dire
tion, in order to ensure that a signi�
ant

number of input elements will be eliminated. This dire
tion is usually found

by 
omputing a median value that 
an be obtained in linear time by any of

the known algorithms [1, 4℄. As for the linear programming problem, both

algorithms from [5, 8℄ 
an be used. Noti
e that Megiddo's algorithm for

linear programming does not require mu
h more than median 
omputing.

So, it seems interesting to obtain for our problems a modi�ed solution, in

whi
h the ora
le uniquely relies on median 
omputing.

As for the problems that have 
omplexity 
(n log n), we o�er some ex-

amples, and also some hints on how to dete
t if a problem falls in this 
lass.



Finally, it is important to noti
e that the te
hnique developped in this

work 
an be extended to three-dimensional problems, optimally solving anal-

ogous problems for polyhedra de�ned by interse
tion of halfspa
es.
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