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Figure 1. A flipturn. The pocket is bold (red), and its lid is dashed.

A central problem in polymer physics and molecular
biology is the reconfiguration of large molecules (modeled
as polygons) such as circular DNA. Most of the research
in this area involves computer-intensive Monte-Carlo sim-
ulations. One efficient method frequently used to generate
random chains or polygons is to modify one such object
into another using a simplepivot operation. This paper is
concerned with a pivot of central concern in polymer physics
research called aflipturn, first defined in an unpublished
1973 paper of Joss and Shannon [4] as follows. Apocket
of a nonconvex polygonP is a maximal connected sequence
of polygon edges disjoint from the convex hull ofP except
at its endpoints. The line segment joining the endpoints of
a pocket is called thelid. A flipturn rotates a pocket 180
degrees about the midpoint of its lid, or equivalently, reverses
the order of the edges of a pocket without changing their
lengths or orientations. Figure 1 shows the effect of a single
flipturn on a nonconvex orthogonal polygon.

Joss and Shannon proved that any simple polygon withn
sides can be convexified by a sequence of at most(n� 1)!
flipturns, by observing that each flipturn produces a new
cyclic permutation of the edges. They also conjectured that
n2
=4 flipturns are always sufficient. Biedl [2] discovered a

family of polygons that are convexified only after(n�2)2
=4
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Figure 2. Three types of degenerate flipturns.

badly chosen flipturns, nearly matching Joss and Shannon’s
conjectured upper bound. Dubinset al. [3] showed that
simple lattice polygon in the plane can be convexified with
n� 4 well-chosen flipturns [5]. Until very recently this
was the best upper bound known. Ahnet al. [1] recently
proved that any polygon withs distinct edge slopes is
convexified after at mostdn(s�1)=2�se modified flipturns;
in particular,n=2�2 modified flipturns suffice to convexify
any orthogonal polygon, andn(n� 3)=2 modified flipturns
suffice to convexify any simple polygon. For related reultss,
see [7].

Our results depend critically on the behavior of flipturns in
the degenerate case where the polygon edges just outside the
pocket lie on the same line as the lid. We offer three alternate
definitions, illustrated in Figure 2. Astandard pocket
touches the polygons convex hull only at its endpoints; this
is closest to the original definition of Joss and Shannon. An
extendedpocket starts and ends at convex hull vertices. Ahn
et al.[1] define amodifiedpocket to be the same as a standard
pocket, except that it includes one extra edge if that edge is
colinear with the lid. Modified flipturns seem to have been
defined specifically to avoid the ‘interesting’ properties of
degenerate flipturns. For orthogonal polygons, for example,
every modified flipturn removes exactly two vertices, but
standard and extended flipturns only remove vertices if the
lid is not horizontal or vertical.

We derive new worst-case upper and lower bounds on both
the shortest and longest convexifying flipturn sequences for
orthogonal polygons. The bounds for the shortest sequence
tell us how quickly we can convexify a polygon if we choose
flipturns intelligently; the longest sequence bounds tell us
how many flipturns we can perform even if we choose
flipturns blindly. Our results are summarized in the first
two rows of Table 1; the last row of each table gives the
corresponding results of Ahnet al. for modified flipturns [1].
We also show that the shortest and longest flipturn sequences



Shortest flipturn sequence Longest flipturn sequence
Flipturn type orthogonal polygons orthogonal polygons s-oriented polygons arbitrary polygons

standard b3(n�4)=4 � ??� b5(n�4)=6 b5(n�4)=6 � ??� n�5 � ns�b3(n+s)=2�1 � n2
�4n+1

extended b3(n�4)=4 b3(n�4)=4 � ??� n�5 � ns�b3(n+s)=2�1 � n2
�4n+1

modified [1] (n�4)=2 (n�4)=2 � dn(s�1)=2e�s � n(n�3)=2

Table 1. Bounds for shortest and longest flipturn sequences for various types of flipturns and polygons.

Figure 3. Decomposing the exterior of a polygon. Triangles indicate
up-regions and down-regions.

for orthogonal polygons can differ in length by as much as
b(n�4)=4 in the worst case. To prove that any orthogonal
polygon is convexified after at mostn� 5 flipturns, we
carefully analyze the number ofbrackets—edges with two
convex or two reflex endpoints—added or removed by any
flipturn. Combining this with thediscrete angletechnique
of Ahn et al. [1], we also show that any simple polygon is
convexified after at mostn2

� 4n+ 1 standard or extended
flipturns.

We describe how to maintain implicit descriptions of a
simple polygon and its convex hull inO(log4n) time per flip-
turn, using a data structure of sizeO(n). Together with our
earlier results, this implies that we can compute a convexi-
fying sequence of flipturns for any polygon inO(n2 log4 n)
time, or for any orthogonal polygon inO(nlog4n) time.
Our data structure is a variant of the dynamic convex hull
structure of Overmars and van Leeuwen [6], with some
important differences. First, instead of insertions and dele-
tions, we must support an operation that reverses an entire
subsequence of edges. This requires us to store the vertices
in their order of appearance around the polygon, rather than
in any coordinate order. Since a linear number of vertices
could be affected by a flipturn, our data structure must
implicitly represent both the order and the locations of the
vertices. Like Overmars and van Leeuwen’s dynamic hull
structure, our structure is a balanced binary tree that (im-
plicitly) stores the convex hull of a subset of the vertices at
each node. Unlike their structure, however, sibling subhulls
in our structure can be disjoint, nested, or overlapping with
exactly two common boundary points. Distinguishing these
three cases and merging the subhulls in each case requires
considerably more effort.

We also prove that for any simple polygon, every sequence
of flipturns eventually leads to the same convex polygon.
The fact that theshapeof the final convex polygon is in-
dependent of the flipturn sequence is rather obvious, but the
independence of the final polygon’sposition requires more
effort. Our approach is to consider a horizontal trapezoidal
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Figure 4. The reduction from a positive instance of SUBSET SUM

to am orthogonal polygon (shaded), and a sequence of flipturns that
leads to an orthogonal pocket.

decomposition of the exterior of the polygon. We call a finite
trapezoid anup-region (resp. down-region) if the shortest
path to infinity starts by going upward (resp. downward).
We show that the total height of the up-regions is exactly the
distance that the top of the polygon moves upward during
during any flipturn sequence. This characterization allows
us to compute the final convex polygon inO(nlogn) time,
without computing any actual flipturns.

Finally, we show that finding the longest flipturn sequence
for a given simple polygon is NP-hard, using a linear-time
reduction from the problem SUBSET SUM. The reduction is
sketched in Figure 4. Given a set of integersA and a target
integerT, our algorithm constructs an orthogonal polygon
that can undergo exactly one orthogonal flipturn if and only
if some subset ofA sums toT. Since orthogonal flipturns do
not remove vertices, this increases the number of flipturns
by one. The overall structure of the polygon is a staircase,
where the lengths of the stairs are the elements ofA and the
integerT, adorned with several inward and outward ‘spikes’
of length roughly equal toT.
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