#### **Ensemble DFT**



#### Aurora Pribram-Jones

University of California, Merced www.hypugaea.com



TDDFT School, Rutgers University Lenapehoking August 7, 2019

### (Excited State) Ensemble DFT



#### **Aurora Pribram-Jones**

University of California, Merced www.hypugaea.com



TDDFT School, Rutgers University
Lenapehoking
August 7, 2019

# Challenges for TDDFT

#### **Double excitations**

Only singles\* from adiabatic approximations

#### **Charge transfer**

Overlap issues

#### **Computational effort**

Lower cost is always better, if accuracy stays comparable

#### What is Ensemble DFT?

#### Ensembles built of ground and excited states

Different kinds, often parameterized weights

#### Monotonically decreasing weights

Actually non-increasing, equi-ensembles are okay

#### Variational method

Non-perturbative method for excitation energies

#### Formal structure mirrors a lot of other DFTs

Difficulties are reminiscent as well...

# Variational Principle

$$\sum_{m=0}^{M} \mathbf{w}_m \langle \tilde{\Psi}_m | \hat{H} | \tilde{\Psi}_m \rangle \ge \sum_{m=0}^{M} \mathbf{w}_m E_m$$

Equality holds when trial wavefunctions are lowest M+1 eigenstates of Hamiltonian

## **Energies and Densities**

Density matrix:

$$\hat{D}_{\scriptscriptstyle \mathcal{W}} = \sum_{m=0}^M \mathsf{w}_m |\Psi_m\rangle\langle\Psi_m|$$

Ensemble density:

$$n_{\mathcal{W}}(\mathbf{r}) = \operatorname{tr}\{\hat{D}_{\mathcal{W}}\hat{n}(\mathbf{r})\} = \sum_{m=0}^{m} w_m n_m(\mathbf{r})$$

Ensemble energy:

$$E_{\mathcal{W}} = \operatorname{tr}\{\hat{D}_{\mathcal{W}}\hat{H}\} = \sum_{m=0}^{M} w_m E_m$$

### Ensemble Kohn-Sham

#### **Ensemble KS Equations:**

$$\begin{cases} -\frac{1}{2} \nabla^2 + v_{\text{S},\mathcal{W}}[n_{\mathcal{W}}](\mathbf{r}) \end{cases} \phi_{j,\mathcal{W}}(\mathbf{r}) = \epsilon_{j,\mathcal{W}} \phi_{j,\mathcal{W}}(\mathbf{r})$$
**KS Density matrix:** Ensemble KS density: 
$$\hat{D}_{\text{S},\mathcal{W}} = \sum_{m=0}^{M} w_m |\Phi_m\rangle \langle \Phi_m| \quad n_{\mathcal{W}}(\mathbf{r}) = \sum_{m=0}^{M} w_m n_m(\mathbf{r}) = \sum_{m=0}^{M} w_m n_m(\mathbf{r})$$

$$\hat{D}_{ ext{ iny S},\mathcal{W}} = \sum_{m=0}^{M} ext{ iny W}_m |\Phi_m
angle \langle \Phi_m |$$

$$n_{\mathcal{W}}(\mathbf{r}) = \sum_{m=0}^{M} w_m n_m(\mathbf{r}) = \sum_{m=0}^{M} w_m n_{S,m}(\mathbf{r})$$

#### **Ensemble energy via KS:**

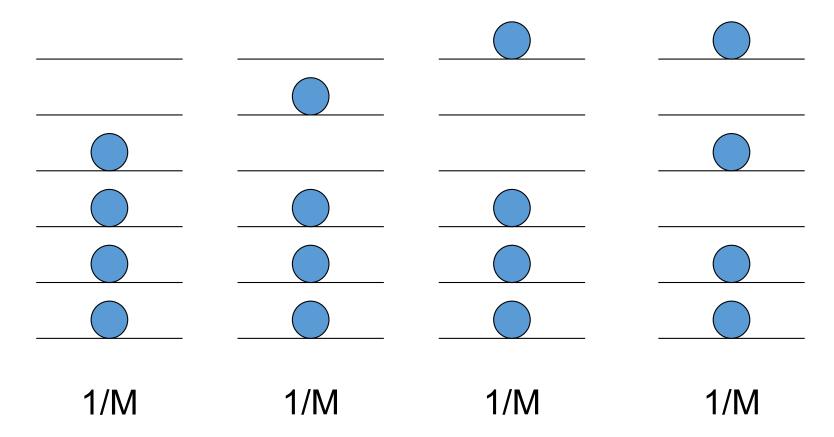
$$E_{W}[n] = T_{S,W}[n] + V[n] + E_{H}[n] + E_{XC,W}[n]$$

Hartree definition Weight dependence

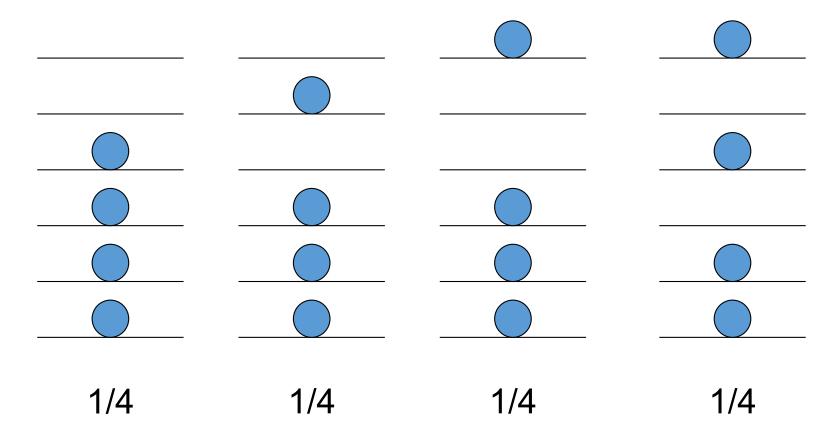
# Ensemble Types

- Finite number of states in an ensemble
- Ensemble structure can vary
- Characterized by weighting scheme
- Most useful ones can be described with parameter

# Equi-Ensemble

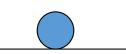


# Equi-Ensemble

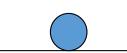












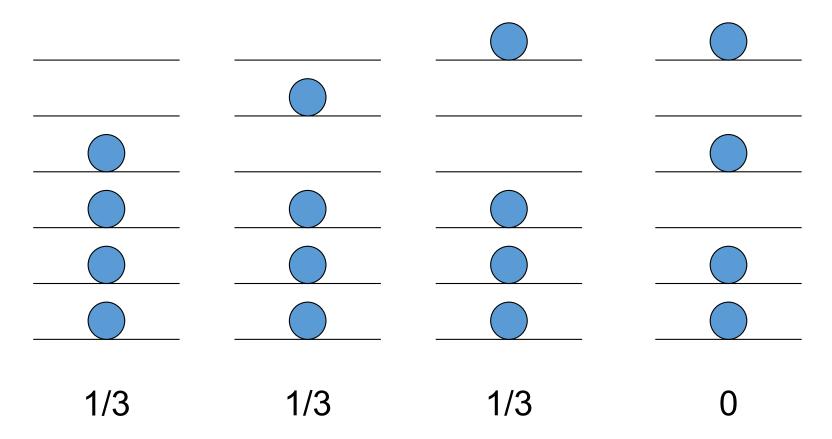




$$\frac{1-\mathtt{w}}{M-1}$$

$$rac{1-\mathtt{w}}{M-1}$$

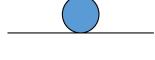
$$\frac{1-\mathtt{w}}{M-1}$$

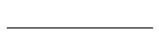


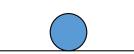
Number of states = M = 4

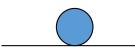












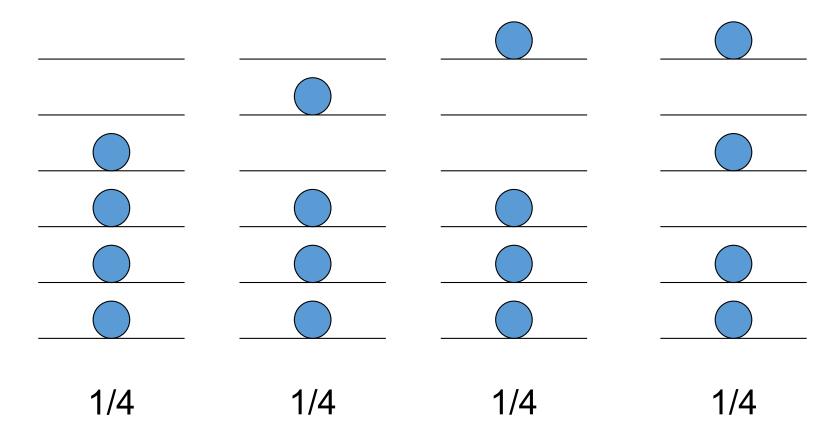




M-1

$$\frac{1-\mathtt{w}}{M-1}$$

$$\frac{1-\mathtt{w}}{M-1}$$

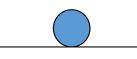


### **GOK Ensemble**

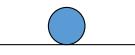
"Interpolates between equi-ensembles"



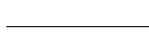












$$\frac{1-\mathtt{w}}{M-1}$$

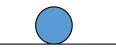
$$rac{1-\mathtt{w}}{M-1}$$

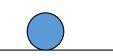
$$\frac{1-\mathtt{w}}{M-1}$$

### **GOK Ensemble**

"Interpolates between equi-ensembles"

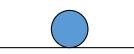


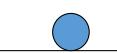




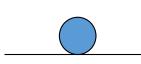












$$\frac{1-\mathtt{w}}{M-1}$$

$$rac{1-\mathtt{w}}{M-1}$$

$$\frac{1-\mathtt{w}}{M-1}$$

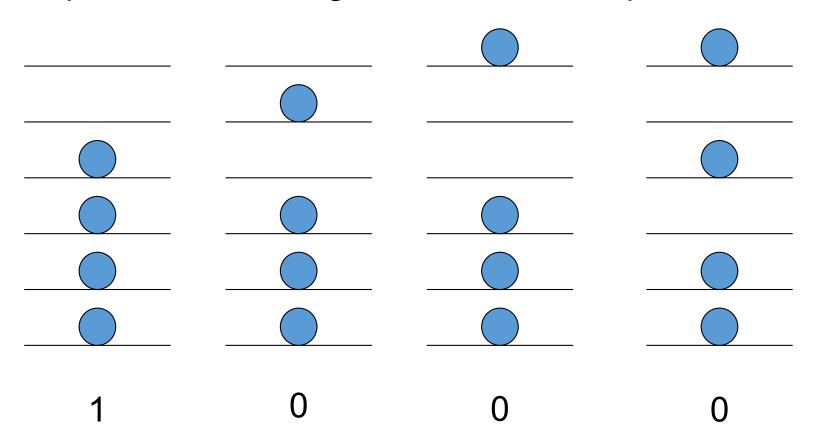
### GOK II Ensemble

"Footnote Ensemble"

$$1-(M-1)\mathtt{w}$$
 w w

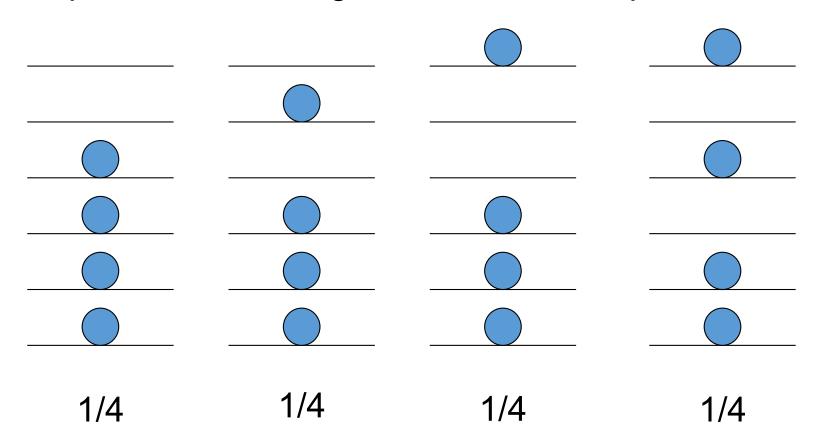
### GOK II Ensemble

"Interpolates between ground state and equi-ensemble"



### GOK II Ensemble

"Interpolates between ground state and equi-ensemble"



#### Your Turn

Using the definitions, write down the expression for a biensemble's density and energy in terms of  $n_0$ ,  $n_1$ ,  $E_0$ ,  $E_1$ , and w. Next, rearrange the energy terms to yield a method for getting the 1<sup>st</sup> excitation energy.

Ensemble energy:

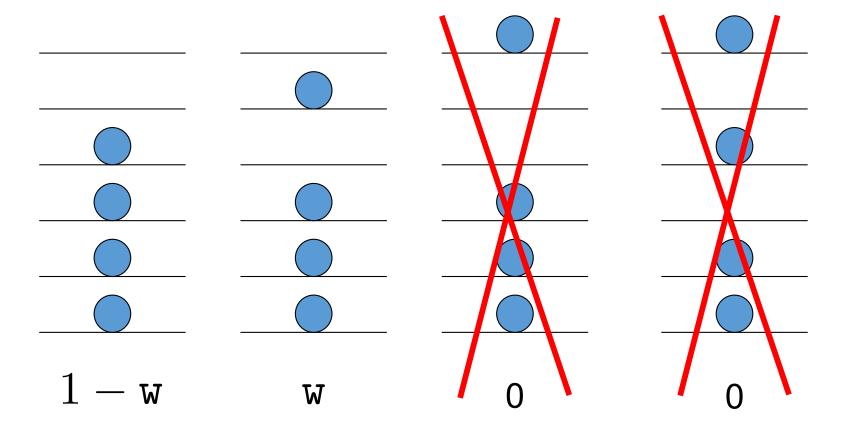
$$E_{\mathcal{W}} = \sum_{m=0}^{M} w_m E_m$$

Ensemble density:

$$n_{\mathcal{W}}(\mathbf{r}) = \sum_{m=0}^{M} w_m n_m(\mathbf{r})$$

### Check Yourself: A Bi-Ensemble

w "switches on" the ensemble behavior



# Check Yourself: Excitation Energy

Ensemble density and energy:

$$n_{\mathbf{w}}(\mathbf{r}) = (1 - \mathbf{w})n_0(\mathbf{r}) + \mathbf{w} \ n_1(\mathbf{r})$$
$$E_{\mathbf{w}} = (1 - \mathbf{w})E_0 + \mathbf{w} \ E_1$$

Rearrange energy terms for excitation energy:

$$E_{\mathbf{w}} = E_0 + \mathbf{w}(E_1 - E_0)$$

$$\omega_1 = \frac{dE_{\mathbf{w}}}{d\mathbf{w}}$$

## **GOK Excitation Energies**

In general:

$$\omega_{I} = \frac{1}{g_{I}} \left. \frac{\partial E_{I,w}}{\partial w} \right|_{w=w_{I}} + \sum_{i=0}^{I-1} \frac{1}{M_{i}} \left. \frac{\partial E_{i,w}}{\partial w} \right|_{w=w_{i}}$$

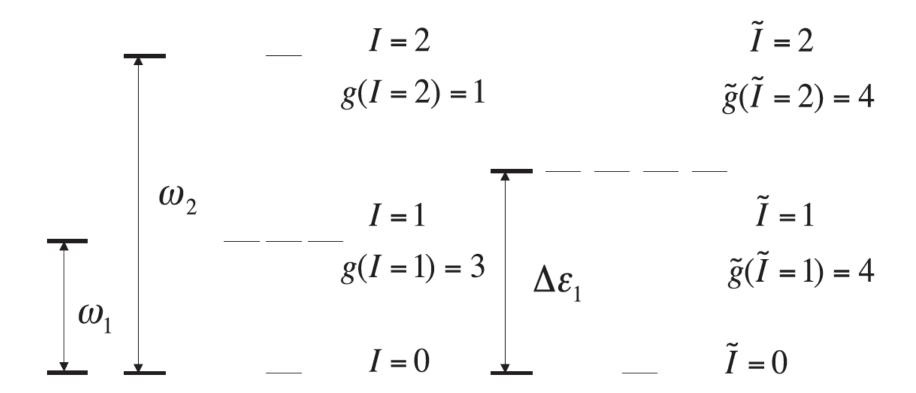
For the first excitation energy:

$$\omega_1 = \omega_{\mathrm{S},1,\mathrm{W}} + \left. \frac{\partial E_{\mathrm{XC},\mathrm{W}}[n]}{\partial \mathrm{W}} \right|_{n=n_{\mathrm{W}}}$$

# Exact vs. KS Excitation Energies

Real

Kohn – Sham



## Your Turn Again

Think for a minute, then discuss with your neighbors...

We talked about how w "turns on" the ensemble as it goes from 0 to a very small positive number. What do you think happens to the XC potential when that "switch on" happens? Is it a smooth transition?

In other words, what does the KS or XC potential do when you first begin to occupy the excited state in a biensemble?

# Your Turn Again

We talked about how w "turns on" the ensemble as it goes from 0 to a very small positive number. What do you think happens to the XC potential when that "switch on" happens? Is it a smooth transition? NOPE!

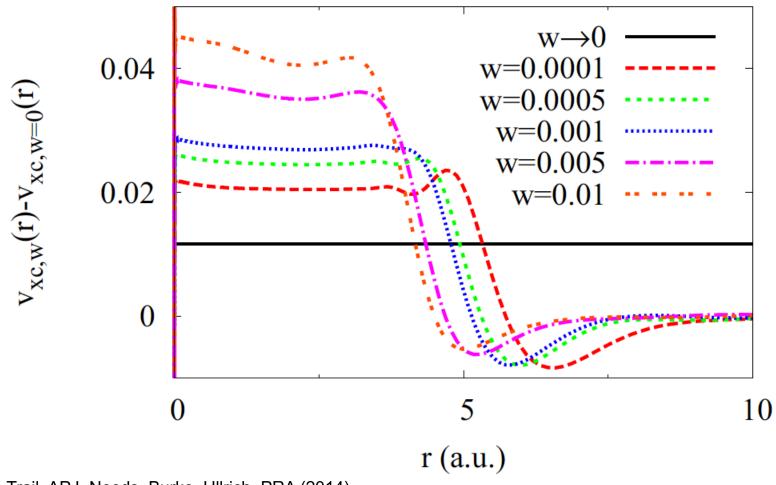
Levy's ensemble derivative discontinuity:

$$\Delta v_{\text{XC}} = \lim_{\text{W} \to 0} \left. \frac{\partial E_{\text{XC},\text{W}}[n]}{\partial \text{W}} \right|_{n=n_{\text{W}}}$$
$$= \left[ \lim_{\text{W} \to 0} v_{\text{XC},\text{W}}[n_{\text{W}}](\mathbf{r}) \right] - v_{\text{xc},\text{W}=0}[n_{\text{W}=0}](\mathbf{r})$$

Levy. Phys. Rev. A 52, R4313 (1995).

# Derivative Discontinuity

#### $\Delta v_{ m XC}$ for helium:



Yang, Trail, APJ, Needs, Burke, Ullrich. PRA (2014).

# Fundamental and Optical Gaps

Senjean and Fromager: tie ensemble optical gap to fundamental gap

 Traditional DFT derivative discontinuity/gap problem related to the ensemble derivative discontinuity!

$$E_{\mathrm{g}}^{N} = \varepsilon_{\mathrm{L}}^{\{N,\xi\}} - \varepsilon_{\mathrm{H}}^{\{N,\xi\}} + \left. \frac{\partial E_{\mathrm{xc}}^{\{N,\xi\}}[n]}{\partial \xi} \right|_{n=n_{\hat{\Gamma}_{0}^{\{N,\xi\}}}}$$

# Challenges for Ensemble DFT

#### **Hartree Definition**

Pick: nice potentials with ghosts or OEP without

#### **Need new XC functional approximations**

Using g.s. functional approximations ineffective

#### **Computational effort**

 Need a lot of ensemble DFT calculations, so not as low-cost as gs DFT

### Traditional Hartree Definition

Familiar, ground-state Hartree:

$$U[n] = \frac{1}{2} \int d^3r \int d^3r' \frac{n(\mathbf{r})n(\mathbf{r})}{|\mathbf{r} - \mathbf{r}'|}$$

If we "plug in" ensemble densities:

$$E_{\scriptscriptstyle \mathrm{H,W}}^{\mathrm{trad}} = U[n_{\scriptscriptstyle \mathrm{W}}]$$

get some troubling results...

### **Another Question**

If you use your definitions of a bi-ensemble density and the traditional Hartree definition, what troubles do you see with the result?

$$n_{\mathbf{w}}(\mathbf{r}) = (1 - \mathbf{w})n_0(\mathbf{r}) + \mathbf{w} \ n_1(\mathbf{r})$$

$$U[n] = \frac{1}{2} \int d^3r \int d^3r' \frac{n(\mathbf{r})n(\mathbf{r})}{|\mathbf{r} - \mathbf{r}'|}$$

$$E_{\mathrm{H,W}}^{\mathrm{trad}} = U[n_{\mathrm{W}}]$$

# Another Response: Ghosts

Traditional Hartree with an ensemble density leads to interactions between the ground and excited state.

- → Spurious or ghost interactions first corrected by Gidopoulos, Papaconstantinou, and Gross in 2002, used to correct atomic excitation energies.
- → Ghost interaction correction (GIC) in 2016 for range-separated ensemble DFT.

#### Ensemble Hartree Definition

Based on ensemble-weighted HX:

$$E_{\mathrm{HX},\mathcal{W}} = \mathrm{tr}\{\hat{D}_{\mathrm{S},\mathcal{W}}\hat{V}_{\mathrm{ee}}\} = \sum_{m=0}^{M} \mathrm{w}_m \langle \Phi_m | \hat{V}_{\mathrm{ee}} | \Phi_m \rangle.$$

Ensemble Hartree definition (Nagy, 2001):

$$E_{\mathrm{H,W}}^{\mathrm{ens}} = \sum_{m=0}^{M} w_m U[n_m]$$

 Nagy ('94 through '02) used to derive exact conditions, OEP for ensembles, etc.

# X Only: EEXX Approximation

Defines Hartree-exchange energy as

$$\mathcal{E}_{\mathrm{Hx}}[n] := \lim_{\lambda \to 0^{+}} \frac{\mathcal{F}^{\lambda}[n] - \mathcal{T}_{s}[n]}{\lambda}$$

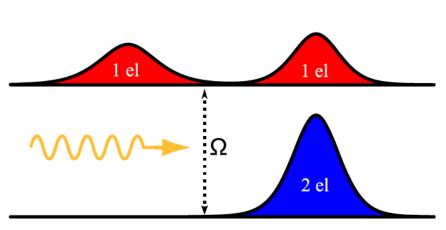
which can also be written as a minimization (over set of non-int ensembles that yield n and exact non-int KE):

$$\mathcal{E}_{\mathrm{Hx}}[n] \equiv \min_{\hat{\Gamma} \in \mathcal{G}^{n,\lambda=0}} \mathrm{Tr}[\hat{\Gamma} \, \hat{W}]$$

- Avoids non-uniqueness issues from direct trace
- No ghosts (GPG02 and SEHX are special cases)
- Admits multireference states
- New insights into correlation for ensembles

Gould and Pittalis. PRL 119, 243001 (2017).

# X Only: Charge Transfer from EEXX

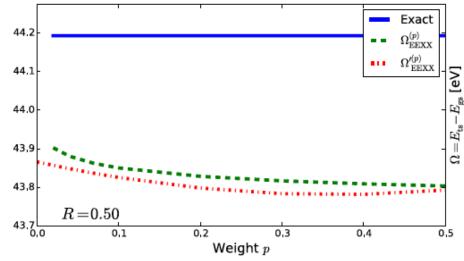


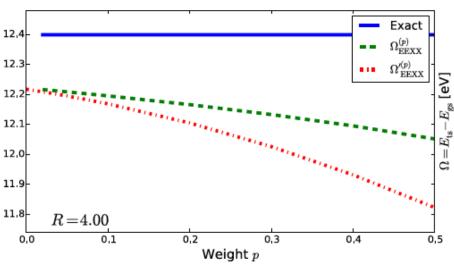
Charge transfer

excitation energies

weight-dependent

within few tenths of eV, (exchange-only, approximation to XC)





Gould, Kronik, Pittalis. J. Chem. Phys. 148, 174101 (2018)

# XC approximations: GACE and GIC

Molecular Physics, 2014
Vol. 112, No. 12, 1684–1701, http://dx.doi.org/10.1080/00268976.2013.858191

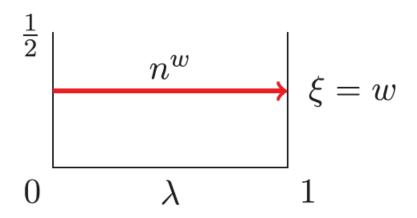


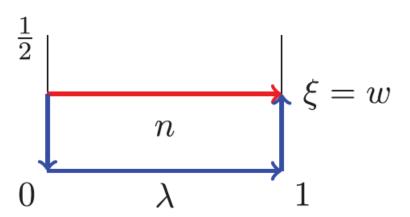
#### RESEARCH ARTICLE

Generalised adiabatic connection in ensemble density-functional theory for excited states: example of the H<sub>2</sub> molecule

Odile Franck and Emmanuel Fromager\*

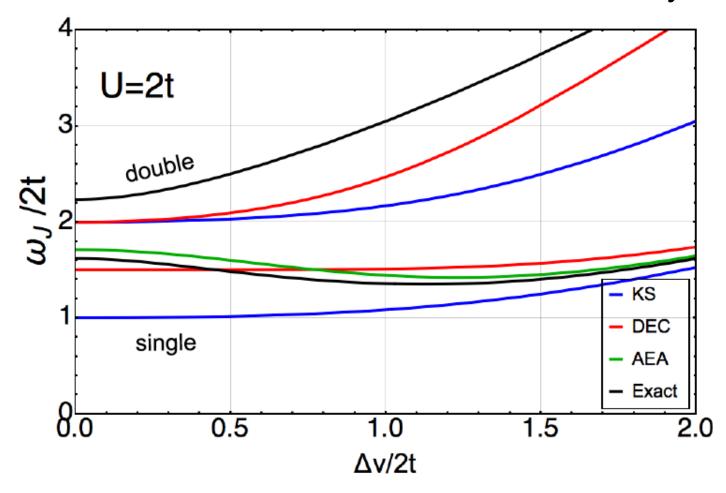
Laboratoire de Chimie Quantique, Institut de Chimie, CNRS/Université de Strasbourg, Strasbourg, France (Received 21 August 2013; accepted 17 October 2013)





# XC approximations: Hubbard

Sagredo and Burke: errors of doubles with X only



Francisca Sagredo and Kieron Burke, Journal of Chemical Physics 149, 134103 (2018)

### Correcting KS Excitations

#### Direct Ensemble Correction (DEC)

- Essentially same cost as expensive g.s. KS
- Captures double excitations
- Fixes mis-ordering
- Only has exchange so far (implementation is with SEHX based on handy cancellation of terms)

## Correcting KS Excitations: DEC

- GOKII excitation energies: take weight to 0
- KS eigenvalues and densities: same for I and I-1
- Direct ensemble correction to KS excitations

$$\left| \Delta \omega_I = \frac{1}{g_I} \frac{d}{d\mathbf{w}} \right|_{\mathbf{w}=0} \left( E_{\mathbf{x}\mathbf{C},\mathbf{I}}^{\mathbf{GOKII}} - E_{\mathbf{x}\mathbf{C},\mathbf{I}-1}^{\mathbf{GOKII}} \right)$$

 Cost of single ground-state calculation if we know ensemble XC as density functional

## DEC/SEHX

Using SEHX approximation, all intermediate levels cancel

$$\omega_{I}[n_{0}] = \omega_{I}^{KS}[n_{0}] + H_{I}/g_{I} - H_{0}/g_{0}$$

where

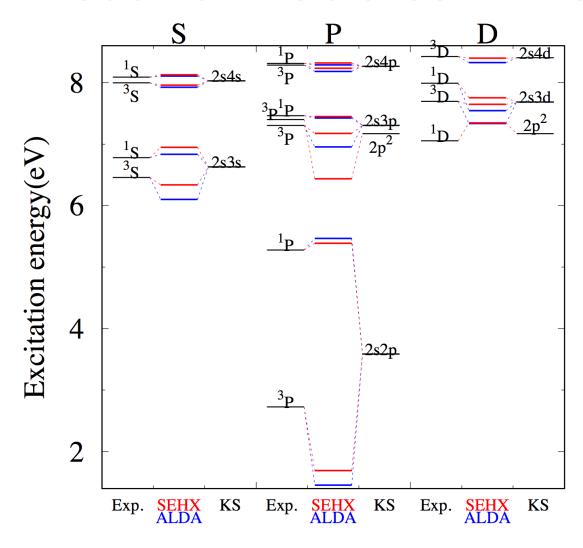
$$H_{i} = \frac{1}{2} \int \int \frac{dr dr'}{|r - r'|} \operatorname{tr} \{ \mathbf{P}(r, r') \cdot \mathbf{Q}_{i} \} - \int dr V_{\mathrm{HX}}(r) n_{i}(r)$$
products of orbital occupation factors & symmetrization coefficients

Yang, APJ, Burke, Ullrich. PRL (2017).

of KS determinants

KS orbitals

### DEC Results: Doubles in Be atom



Yang, APJ, Burke, Ullrich. PRL (2017).

### DEC Results: Hooke's Atom

|             |               | $\Delta \omega_I$ |       |      |       |         |
|-------------|---------------|-------------------|-------|------|-------|---------|
|             |               |                   | TDDFT | DEC  |       | TDDFT   |
| I           | $\omega_{KS}$ | exact             | AEXX  | SEHX | exact | dressed |
| Singles     |               |                   |       |      |       |         |
| 1           | 962           | 38                | 39    | 39   | 38    | 39      |
| 3           | 1953          | 47                | 30    | 30   | 48    | 49      |
| 5           | 2948          | 52                | 25    | 27   | 51    | 54      |
| Doubles     |               |                   |       |      |       |         |
| 2           | 1923          | 41                |       | 58   | 41    | 39      |
| $\boxed{4}$ | 2915          | 49                | _     | 77   | 49    | 47      |

Yang, APJ, Burke, Ullrich. PRL (2017).

### Summary

Ensemble DFT is alternative way of calculating excitation energies.

#### Things to consider:

- Definition of Hartree energy
- Ensemble weight-dependent XC approximation
- Which ensemble will you use?
- Do you need more than just energy differences?

#### Things to watch:

- New XC approximations
- Newly accessible properties
- Periodic systems, gaps, model systems, and exact conditions



