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Why shall we care about the excited-state dynamics of molecules?

⇓

i!
∂

∂t
Ψ(r,R, t) = ĤmolΨ(r,R, t)

⇓

Electronic-structure problem – LR-TDDFT

⇓

Nuclear dynamics: traveling Gaussian functions
Multiple Spawning

⇓

Nuclear dynamics: swarm of classical trajectories
Surface Hopping & Ehrenfest Dynamics

⇓

Examples using LR-TDDFT



For an Overview on
Nonadiabatic Molecular

Dynamics:

Federica Agostini and Basile F. E.

Curchod, WIREs Comp. Mol. Sci.,

e1417 (2019).



What is nonadiabatic dynamics, and why is that
challenging at all?



Nonadiabatic dynamics Motivation

Beyond Born-Oppenheimer

Born-Oppenheimer approximation (1927)
(“Perspective on Zur Quantentheorie der Molekeln”, Theor. Chem. Acc., 103, 173 (2000))
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Nonadiabatic dynamics Motivation

Beyond Born-Oppenheimer

Born-Oppenheimer approximation:
neglects coupling between electronic states and nuclear motion
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Nonadiabatic dynamics Motivation

Beyond Born-Oppenheimer

Dynamics in electronically excited states:
nonadiabatic effects!
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Nonadiabatic dynamics Motivation

Importance of Electronic Excited States

Long-time exposure photography of fireflies...

Picture by Tsuneaki Hiramatsu
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Nonadiabatic dynamics Motivation

Importance of Electronic Excited States

Now applying the Born-Oppenheimer approximation!
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Nonadiabatic dynamics Motivation

Dream: in silico photochemical experiment

Molecule initially in its electronic ground state
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Nonadiabatic dynamics Motivation

Dream: in silico photochemical experiment

Molecule absorbs a photon...
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Nonadiabatic dynamics Motivation

Dream: in silico photochemical experiment

... that leads to an electronic transition (here to S1).
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Nonadiabatic dynamics Motivation

Dream: in silico photochemical experiment

Molecule is in S1.
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Nonadiabatic dynamics Motivation

Dream: in silico photochemical experiment

Relaxation processes
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Nonadiabatic dynamics Motivation

Dream: in silico photochemical experiment

Nonadiabatic processes
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Nonadiabatic dynamics Motivation

Nonadiabatic dynamics - a theoretical challenge

A complete challenge for theoretical
chemistry.

Coupling between electrons, nuclei,
and the environment.

Electronic structure problem:
ΦJ(r;R)?

Environment: Ĥ?

Nuclear dynamics: χ̇J(R, t)?
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Nonadiabatic dynamics Motivation

Nonadiabatic dynamics - a theoretical challenge

i!
∂
∂t
Ψ(r,R, t) = ĤΨ(r,R, t)

Ψ(r,R, t) =
∑

∞

J ΦJ(r;R)χJ(R, t)

A complete challenge for theoretical
chemistry.

Coupling between electrons, nuclei,
and the environment.

Electronic structure problem:
ΦJ(r;R)?

Environment: Ĥ?

Nuclear dynamics: χ̇J(R, t)?
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Nonadiabatic dynamics Motivation

Nonadiabatic dynamics - a theoretical challenge

Electronic energies: E el
J (R)

Nuclear forces: FJ = −∇RE
el
J (R)|R=R(t)

Nonadiabatic coupling vectors:
dJI (R) = ⟨ΦJ |∇R|ΦI ⟩r

...

A complete challenge for theoretical
chemistry.

Coupling between electrons, nuclei,
and the environment.

Electronic structure problem:
ΦJ(r;R)?

Environment: Ĥ?

Nuclear dynamics: χ̇J(R, t)?
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Nonadiabatic dynamics Motivation

Nonadiabatic dynamics - a theoretical challenge

External electromagnetic field?
Solvent effects?

A complete challenge for theoretical
chemistry.

Coupling between electrons, nuclei,
and the environment.

Electronic structure problem:
ΦJ(r;R)?

Environment: Ĥ?

Nuclear dynamics: χ̇J(R, t)?
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Nonadiabatic dynamics Motivation

Nonadiabatic dynamics - a theoretical challenge

Quantum-mechanical treatment
of the nuclei?

Classical approximation and trajectories?
How to account for nonadiabatic effects?

A complete challenge for theoretical
chemistry.

Coupling between electrons, nuclei,
and the environment.

Electronic structure problem:
ΦJ(r;R)?

Environment: Ĥ?

Nuclear dynamics: χ̇J(R, t)?
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Nonadiabatic dynamics Motivation

Nonadiabatic dynamics – A theoretical challenge

i!
∂
∂t
Ψ(r,R, t) = ĤΨ(r,R, t)

Ψ(r,R, t) =
∑

∞

J ΦJ(r;R)χJ(R, t)

A complete challenge for theoretical
chemistry.

Coupling between electrons, nuclei,
and the environment.

Electronic structure problem:
ΦJ(r;R)?

Environment: Ĥ?

Nuclear dynamics: χ̇J(R, t)?

Such complexity implies a
compromise between computational

efficiency and
nuclear-dynamics/electronic-structure

accuracy.
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Nonadiabatic dynamics

∗ ∗ ∗

Central equations



Nonadiabatic dynamics Molecular TDSE

Starting point

Time-dependent Schrödinger equation (TDSE):

i!
∂

∂t
Ψ(r,R, t) = Ĥ(r,R)Ψ(r,R, t)

where Ĥ(r,R) is the molecular time-independent Hamiltonian and Ψ(r,R, t) the
total wavefunction (nuclear + electronic) of our system:

Ĥ(r,R) = −
∑

γ

!
2

2Mγ

∇
2
γ −

∑

i

!
2

2
∇

2
i +

∑

i<j

1

|ri − rj |
−

∑

γ,i

Zγ

|Rγ − ri |
+

∑

γ<β

ZγZβ

|Rγ − Rβ |

= −
∑

γ

!
2

2Mγ

∇
2
γ + Ĥel(r,R)

γ (i) is a label for the nuclei (electrons).

This wavefunction describes both the electrons and the nuclei.
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Nonadiabatic dynamics Molecular TDSE

Representation of Ψ(r,R, t)

Different ways to express Ψ(r,R, t):

Exact:

Ψ(r,R, t)
Born-
−−−→
Huang

∞
∑

J

ΦJ(r;R)χJ(R, t)

Ψ(r,R, t)
Exact

−−−−−−−→
Factorization

Φ(r;R, t)χ(R, t)

Approximate:

Ψ(r,R, t)
Born-

−−−−−−−→
Oppenheimer

ΦJ(r;R)χJ(R, t)

Ψ(r,R, t)
TDSCF
−−−−→ Φ(r, t)χ(R, t)

Nonadiabatic (Molecular) Dynamics



Nonadiabatic dynamics Molecular TDSE

Representation of Ψ(r,R, t)

Different ways to express Ψ(r,R, t):

Exact:

Ψ(r,R, t)
Born-
−−−→
Huang

∞
∑

J

ΦJ(r;R)χJ(R, t)

Ψ(r,R, t)
Exact

−−−−−−−→
Factorization

Φ(r;R, t)χ(R, t)

Approximate:

Ψ(r,R, t)
Born-

−−−−−−−→
Oppenheimer

ΦJ(r;R)χJ(R, t)

Ψ(r,R, t)
TDSCF
−−−−→ Φ(r, t)χ(R, t)

Nonadiabatic (Molecular) Dynamics



Nonadiabatic dynamics Molecular TDSE

Representation of Ψ(r,R, t)

Different ways to express Ψ(r,R, t):

Exact:

Ψ(r,R, t)
Born-
−−−→
Huang

∞
∑

J

ΦJ(r;R)χJ(R, t)

Ψ(r,R, t)
Exact

−−−−−−−→
Factorization

Φ(r;R, t)χ(R, t)

Approximate:

Ψ(r,R, t)
Born-

−−−−−−−→
Oppenheimer

ΦJ(r;R)χJ(R, t)

Ψ(r,R, t)
TDSCF
−−−−→ Φ(r, t)χ(R, t)

Nonadiabatic (Molecular) Dynamics
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Nonadiabatic dynamics Molecular TDSE

Born-Huang representation

Ψ(r,R, t) =

∞
∑

J

ΦJ(r;R)χJ(R, t)

In this equation, {ΦJ(r;R)} describes a complete set of basis electronic functions
which can be taken as solutions of the time-independent Schrödinger equation:

Ĥel(r,R)ΦJ(r;R) = E
el
J (R)ΦJ(r;R)

R is taken as a parameter.
Eigenfunctions of Ĥel(r;R) are considered to be orthonormal, i.e. ⟨ΦJ |ΦI ⟩r = δJI ,
∀R.

The time-dependence of the total molecular wavefunction is transferred to the
nuclear wavefunctions.

We now insert the Born-Huang representation into the TDSE...
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Nonadiabatic dynamics Molecular TDSE

Equations of motion for the nuclei

i!
∂

∂t
χI (R, t) =

[

−
∑

γ

!
2

2Mγ

∇2
γ + E

el
I (R)

]

χI (R, t) +
∞
∑

J

CIJ(R)χJ(R, t)

This expression corresponds to an equation for time-dependent nuclear
wavefunctions in each electronic state.
E

el
I (R) represents the potential energy surface for the nuclei in electronic state I .
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Nonadiabatic dynamics Molecular TDSE

Equations of motion for the nuclei

i!
∂

∂t
χI (R, t) =

[

−
∑

γ

!
2

2Mγ

∇2
γ + E

el
I (R)

]

χI (R, t) +

∞
∑

J

CIJ(R)χJ(R, t)

This expression corresponds to an equation for time-dependent nuclear
wavefunctions in each electronic state.
E

el
I (R) represents the potential energy surface for the nuclei in electronic state I .

Important additional term: CIJ(R)! Nonadiabatic coupling terms:

CIJ(R) =−
∑

γ

!
2

2Mγ

⟨ΦI (R)|
∂2

∂R2
γ

|ΦJ(R)⟩r −
∑

γ

!

Mγ

⟨ΦI (R)|
∂

∂Rγ

|ΦJ(R)⟩r
∂

∂Rγ

Nonadiabatic coupling vectors: dIJ(R) = ⟨ΦI (R)|∇R|ΦJ(R)⟩r

Second-order nonadiabatic couplings: DIJ(R) = ⟨ΦI (R)|∇
2
R|ΦJ(R)⟩r
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Nonadiabatic dynamics Molecular TDSE

Equations of motion for the nuclei

i!
∂

∂t
χI (R, t) =

[

−
∑

γ

!
2

2Mγ

∇2
γ + E

el
I (R)

]

χI (R, t) +

∞
∑

J

CIJ(R)χJ(R, t)

This expression corresponds to an equation for time-dependent nuclear
wavefunctions in each electronic state.
E

el
I (R) represents the potential energy surface for the nuclei in electronic state I .

Important additional term: CIJ(R)! Nonadiabatic coupling terms:

CIJ(R) =−
∑

γ

!
2

2Mγ

⟨ΦI (R)|
∂2

∂R2
γ

|ΦJ(R)⟩r −
∑

γ

!

Mγ

⟨ΦI (R)|
∂

∂Rγ

|ΦJ(R)⟩r
∂

∂Rγ

The nonadiabatic coupling terms couple the motion of the nuclei with the
electronic states, and are crucial to describe the photochemistry of a molecule.
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