How shall we treat the nuclear wavefunctions?

$$\Psi(\mathbf{r},\mathbf{R},t)=\sum_{J}^{\infty}\Phi_{J}(\mathbf{r};\mathbf{R})\chi_{J}(\mathbf{R},t)$$

Credit: J. Michl and V. Bonacic-Koutecký, "Electronic Aspects of Organic Photochemistry". John Wiley and Sons, Inc., New York, 1990.

Nuclear equations of motion

Multiconfiguration Time-Dependent Hartree (MCTDH)

G. A. Worth, H.-D. Meyer, H. Köppel, L. S. Cederbaum, I. Burghardt, Int. Rev. Phys. Chem., 27, 569 (2008).

Nonadiabatic (Molecular) Dynamics

Nonadiabatic quantum molecular dynamics

Nuclear wavefunction represented by trajectory basis functions (TBFs)

130, 244101 (2009). FMS (Martínez): J. Phys. Chem., 100, 7884 (1996). Other strategies: (Levine, 2016; Izmaylov, 2017).

Full- and Ab Initio Multiple Spawning

Credit: J. Michl and V. Bonacic-Koutecký, "Electronic Aspects of Organic Photochemistry". John Wiley and Sons, Inc., New York, 1990.

Full Multiple Spawning or ... Formally exact method

Ab Initio Multiple Spawning (AIMS) Approximate nuclear dynamics, but preserves important quantum effects.

Full Multiple Spawning or ... Formally exact method **Ab Initio Multiple Spawning (AIMS)** Approximate nuclear dynamics, but preserves important quantum effects.

Full Multiple Spawning or ... Formally exact method

Ab Initio Multiple Spawning (AIMS) Approximate nuclear dynamics, but preserves important quantum effects.

Full Multiple Spawning or ... Formally exact method

Ab Initio Multiple Spawning (AIMS) Approximate nuclear dynamics, but preserves important quantum effects.

Full Multiple Spawning or ... Formally exact method

Ab Initio Multiple Spawning (AIMS) Approximate nuclear dynamics, but preserves important quantum effects.

Full Multiple Spawning in a nutshell

$$i \frac{\partial}{\partial t} \Psi(\mathbf{r}, \mathbf{R}, t) = \hat{H}_{mol} \Psi(\mathbf{r}, \mathbf{R}, t)$$

Born-Huang:
$$\Psi(\mathbf{r}, \mathbf{R}, t) = \sum_{J}^{\infty} \Phi_{J}(\mathbf{r}; \mathbf{R}) \chi_{J}(\mathbf{R}, t)$$

Eqs. of motion for the nuclei, $\dot{\chi}_I(\mathbf{R}, t)$. (exact)

FMS Ansatz:
$$\chi_{l}(\mathbf{R}, t) = \sum_{j=1}^{N_{l}(t)} \frac{U}{C_{j}^{l}(t)} \chi_{j}^{l}\left(\mathbf{R}; \overline{\mathbf{R}}_{j}^{l}(t), \overline{\mathbf{P}}_{j}^{l}(t), \overline{\gamma}_{j}^{l}(t), \alpha\right)$$

Eqs. of motion for the complex amplitudes $C'_j(t)$. Gaussians center $\overline{\mathbf{R}}'_j(t)$ and momentum $\overline{\mathbf{P}}'_j(t)$ are evolved classically, while the phase $\overline{\gamma}'_j(t)$ is evolved semiclassically.

Full Multiple Spawning in a nutshell

$$i \frac{\partial}{\partial t} \Psi(\mathbf{r}, \mathbf{R}, t) = \hat{H}_{mol} \Psi(\mathbf{r}, \mathbf{R}, t)$$

Born-Huang:
$$\Psi(\mathbf{r}, \mathbf{R}, t) = \sum_{J}^{\infty} \Phi_{J}(\mathbf{r}; \mathbf{R}) \chi_{J}(\mathbf{R}, t)$$

 \Downarrow

Eqs. of motion for the nuclei, $\dot{\chi}_{I}(\mathbf{R}, t)$. (exact)

FMS Ansatz:
$$\chi_{l}(\mathbf{R}, t) = \sum_{j=1}^{N_{l}(t)} \frac{\mathcal{V}_{j}}{C_{j}^{\prime}(t)} \chi_{j}^{\prime}\left(\mathbf{R}; \overline{\mathbf{R}}_{j}^{\prime}(t), \overline{\mathbf{P}}_{j}^{\prime}(t), \overline{\gamma}_{j}^{\prime}(t), \alpha\right)$$

Eqs. of motion for the complex amplitudes $C'_j(t)$. Gaussians center $\overline{\mathbf{R}}'_j(t)$ and momentum $\overline{\mathbf{P}}'_j(t)$ are evolved classically, while the phase $\overline{\gamma}'_i(t)$ is evolved semiclassically.

Full Multiple Spawning in a nutshell

$$i\frac{\partial}{\partial t}\Psi(\mathbf{r},\mathbf{R},t)=\hat{H}_{mol}\Psi(\mathbf{r},\mathbf{R},t)$$

Born-Huang:
$$\Psi(\mathbf{r}, \mathbf{R}, t) = \sum_{J}^{\infty} \Phi_{J}(\mathbf{r}; \mathbf{R}) \chi_{J}(\mathbf{R}, t)$$

Eqs. of motion for the nuclei, $\dot{\chi}_{I}(\mathbf{R}, t)$. (exact)

FMS Ansatz:
$$\chi_{I}(\mathbf{R}, t) = \sum_{j=1}^{N_{I}(t)} \frac{\zeta_{j}'(t)}{\zeta_{j}'(t)} \chi_{j}'(\mathbf{R}; \overline{\mathbf{R}}_{j}'(t), \overline{\mathbf{P}}_{j}'(t), \overline{\gamma}_{j}'(t), \alpha)$$

Eqs. of motion for the complex amplitudes $C'_j(t)$. Gaussians center $\overline{\mathbf{R}}'_j(t)$ and momentum $\overline{\mathbf{P}}'_j(t)$ are evolved classically, while the phase $\overline{\gamma}'_j(t)$ is evolved semiclassically.

Full Multiple Spawning in a nutshell

$$i \frac{\partial}{\partial t} \Psi(\mathbf{r}, \mathbf{R}, t) = \hat{H}_{mol} \Psi(\mathbf{r}, \mathbf{R}, t)$$

Born-Huang:
$$\Psi(\mathbf{r}, \mathbf{R}, t) = \sum_{J}^{\infty} \Phi_{J}(\mathbf{r}; \mathbf{R}) \chi_{J}(\mathbf{R}, t)$$

 \Downarrow

Eqs. of motion for the nuclei, $\dot{\chi}_I(\mathbf{R}, t)$. (exact)

FMS Ansatz:
$$\chi_{I}(\mathbf{R}, t) = \sum_{j=1}^{N_{I}(t)} \frac{\bigcup}{C'_{j}(t)\chi'_{j}(\mathbf{R}; \overline{\mathbf{R}}'_{j}(t), \overline{\mathbf{P}}'_{j}(t), \overline{\gamma}'_{j}(t), \alpha)}$$

$$\frac{d}{dt}\mathbf{C}'(t) = -i(\mathbf{S}_{II}^{-1})\left[\left[\mathbf{H}_{II} - i\dot{\mathbf{S}}_{II}\right]\mathbf{C}' + \sum_{J \neq I}\mathbf{H}_{IJ}\mathbf{C}^{J}\right]$$

Required electronic structure ingredients in FMS (exact)

$$H_{kk'}^{IJ} = \langle \chi_k^I | \hat{T}_{nuc} | \chi_{k'}^J \rangle_{\mathsf{R}} \delta_{IJ} + \langle \chi_k^I | \mathcal{E}_l^{el} | \chi_{k'}^J \rangle_{\mathsf{R}} \delta_{IJ} - \langle \chi_k^I | \sum_{\rho=1}^{3N} \frac{1}{M_{\rho}} \langle \Phi_I | \frac{\partial}{\partial R_{\rho}} | \Phi_J \rangle_{\mathsf{r}} \frac{\partial}{\partial R_{\rho}} | \chi_{k'}^J \rangle_{\mathsf{R}} - \langle \chi_k^I | \sum_{\rho=1}^{3N} \frac{1}{2M_{\rho}} \langle \Phi_I | \frac{\partial^2}{\partial R_{\rho}^2} | \Phi_J \rangle_{\mathsf{r}} | \chi_{k'}^I \rangle_{\mathsf{R}}$$

Electronic Properties

(adiabatic representation):

- $E_J^{el}(\mathbf{R})$
- $\mathbf{F}_J = -\nabla_{\mathbf{R}} E_J^{el}(\mathbf{R})|_{\mathbf{R}=\mathbf{R}(t)}$
- $\mathbf{d}_{JI}(\mathbf{R}) = \langle \Phi_J(\mathbf{R}) | \nabla_{\mathbf{R}} | \Phi_I(\mathbf{R}) \rangle_{\mathbf{r}}$
- $D_{JI}(\mathbf{R}) = \langle \Phi_J(\mathbf{R}) | \nabla^2_{\mathbf{R}} | \Phi_I(\mathbf{R}) \rangle_{\mathbf{r}}$

Analytical model systems.

Adv. Chem. Phys., **121**, 439 (2002); *Chem. Rev.*, **118**, 3305 (2018).

Expansion of the electronic property around the centroid position $\overline{R}_{km}^{(II)}$

$$E_{I}^{el}(\mathbf{R}) = E_{I}^{el}(\overline{\mathbf{R}}_{km}^{(II)}) + \sum_{\rho}^{3N} (R_{\rho} - \overline{R}_{\rho,km}^{(II)}) \frac{\partial E_{I}^{el}(\mathbf{R})}{\partial R_{\rho}} \Big|_{R_{\rho} = \overline{R}_{\rho,km}^{(II)}} \\ + \frac{1}{2} \sum_{\rho\rho'}^{3N} (R_{\rho} - \overline{R}_{\rho,km}^{(II)}) \frac{\partial^{2} E_{I}^{el}(\mathbf{R})}{\partial R_{\rho} \partial R_{\rho'}} \Big|_{R_{\rho} = \overline{R}_{\rho,km}^{(II)}, R_{\rho'} = \overline{R}_{\rho',km}^{(II)}} (R_{\rho'} - \overline{R}_{\rho',km}^{(II)}) + \dots$$

Approximation for the integrals: saddle-point approximation of order 0!

 $E_{I}^{el}(\mathbf{R}) \approx E_{I}^{el}(\overline{\mathbf{R}}_{km}^{(II)})$

Required electronic structure ingredients in AIMS (approximated)

$$H_{kk'}^{IJ} = \langle \chi_k^I | \hat{T}_{nuc} | \chi_{k'}^J \rangle_{\mathsf{R}} \delta_{IJ} + E_I^{el}(\overline{\mathsf{R}}_{kk'}^{(IJ)}) \langle \chi_k^I | \chi_{k'}^J \rangle_{\mathsf{R}} \delta_{IJ} - \sum_{\rho=1}^{3N} \left(\mathsf{d}_{IJ}(\overline{\mathsf{R}}_{kk'}^{(IJ)}) \right)_{\rho} \langle \chi_k^I | \frac{1}{M_{\rho}} \frac{\partial}{\partial R_{\rho}} | \chi_{k'}^J \rangle_{\mathsf{R}} \delta_{IJ} - \sum_{\rho=1}^{3N} \left(\mathsf{d}_{IJ}(\overline{\mathsf{R}}_{kk'}^{(IJ)}) \right)_{\rho} \langle \chi_k^I | \frac{1}{M_{\rho}} \frac{\partial}{\partial R_{\rho}} | \chi_{k'}^J \rangle_{\mathsf{R}} \delta_{IJ} - \sum_{\rho=1}^{3N} \left(\mathsf{d}_{IJ}(\overline{\mathsf{R}}_{kk'}^{(IJ)}) \right)_{\rho} \langle \chi_k^I | \frac{1}{M_{\rho}} \frac{\partial}{\partial R_{\rho}} | \chi_{k'}^J \rangle_{\mathsf{R}} \delta_{IJ} - \sum_{\rho=1}^{3N} \left(\mathsf{d}_{IJ}(\overline{\mathsf{R}}_{kk'}^{(IJ)}) \right)_{\rho} \langle \chi_k^I | \frac{1}{M_{\rho}} \frac{\partial}{\partial R_{\rho}} | \chi_{k'}^J \rangle_{\mathsf{R}} \delta_{IJ} - \sum_{\rho=1}^{3N} \left(\mathsf{d}_{IJ}(\overline{\mathsf{R}}_{kk'}^{(IJ)}) \right)_{\rho} \langle \chi_k^I | \frac{1}{M_{\rho}} \frac{\partial}{\partial R_{\rho}} | \chi_{k'}^J \rangle_{\mathsf{R}} \delta_{IJ} + \sum_{\rho=1}^{3N} \left(\mathsf{d}_{IJ}(\overline{\mathsf{R}}_{kk'}^{(IJ)}) \right)_{\rho} \langle \chi_k^I | \frac{1}{M_{\rho}} \frac{\partial}{\partial R_{\rho}} | \chi_{k'}^J \rangle_{\mathsf{R}} \delta_{IJ} + \sum_{\rho=1}^{3N} \left(\mathsf{d}_{IJ}(\overline{\mathsf{R}}_{kk'}^{(IJ)}) \right)_{\rho} \langle \chi_k^I | \frac{1}{M_{\rho}} \frac{\partial}{\partial R_{\rho}} | \chi_{k'}^J \rangle_{\mathsf{R}} \delta_{IJ} + \sum_{\rho=1}^{3N} \left(\mathsf{d}_{IJ}(\overline{\mathsf{R}}_{kk'}^{(IJ)}) \right)_{\rho} \langle \chi_k^I | \frac{1}{M_{\rho}} \frac{\partial}{\partial R_{\rho}} | \chi_{k'}^J \rangle_{\mathsf{R}} \delta_{IJ} + \sum_{\rho=1}^{3N} \left(\mathsf{d}_{IJ}(\overline{\mathsf{R}}_{kk'}^J) \right)_{\rho} \langle \chi_k^I | \frac{1}{M_{\rho}} \frac{\partial}{\partial R_{\rho}} | \chi_{k'}^J \rangle_{\mathsf{R}} \delta_{IJ} + \sum_{\rho=1}^{3N} \left(\mathsf{d}_{IJ}(\overline{\mathsf{R}}_{kk'}^J) \right)_{\rho} \langle \chi_k^I | \chi_{k'}^J \rangle_{\mathsf{R}} \delta_{IJ} + \sum_{\rho=1}^{3N} \left(\mathsf{d}_{IJ}(\overline{\mathsf{R}}_{kk'}^J) \right)_{\rho} \langle \chi_k^I | \chi_{k'}^J \rangle_{\mathsf{R}} \delta_{IJ} + \sum_{\rho=1}^{3N} \left(\mathsf{d}_{IJ}(\overline{\mathsf{R}}_{kk'}^J) \right)_{\rho} \langle \chi_k^I | \chi_{k'}^J \rangle_{\mathsf{R}} \delta_{IJ} + \sum_{\rho=1}^{3N} \left(\mathsf{d}_{IJ}(\overline{\mathsf{R}}_{kk'}^J) \right)_{\rho} \langle \chi_k^I | \chi_{k'}^J \rangle_{\mathsf{R}} \delta_{IJ} + \sum_{\rho=1}^{3N} \left(\mathsf{d}_{IJ}(\overline{\mathsf{R}}_{kk'}^J) \right)_{\rho} \langle \chi_k^I \rangle_{\mathsf{R}} \delta_{IJ} + \sum_{\rho=1}^{3N} \left(\mathsf{d}_{IJ}(\overline{\mathsf{R}}_{kk'}^J) \right)_{\rho} \langle \chi_k^I \rangle_{\mathsf{R}} \delta_{IJ} + \sum_{\rho=1}^{3N} \left(\mathsf{d}_{IJ}(\overline{\mathsf{R}}_{kk'}^J) \right)_{\rho} \langle \chi_k^I \rangle_{\mathsf{R}} \delta_{IJ} + \sum_{\rho=1}^{3N} \left(\mathsf{d}_{IJ}(\overline{\mathsf{R}}_{kk'}^J) \right)_{\rho} \langle \chi_k^I \rangle_{\mathsf{R}} \delta_{IJ} + \sum_{\rho=1}^{3N} \left(\mathsf{d}_{IJ}(\overline{\mathsf{R}}_{kk'}^J) \right)_{\rho} \langle \chi_k^I \rangle_{\mathsf{R}} \delta_{IJ} + \sum_{\rho=1}^{3N} \left(\mathsf{d}_{IJ}(\overline{\mathsf{R}}_{kk'}^J) \right)_{\rho} \langle \chi_k^I \rangle_{\mathsf{R}} \delta_{IJ} + \sum_{\rho=1}^{3N} \left(\mathsf{d}_$$

Electronic Properties

(adiabatic representation): $\mathbf{R} = \mathbf{R}_{TBF}$ or $\overline{\mathbf{R}}^{(IJ)}$

•
$$E_J^{el}(\mathbf{R})$$

- $\mathbf{F}_J = -\nabla_{\mathbf{R}} E_J^{el}(\mathbf{R})|_{\mathbf{R}=\mathbf{R}_{TBF}(t)}$
- $\mathbf{d}_{JI}(\mathbf{R}) = \langle \Phi_J(\mathbf{R}) | \nabla_{\mathbf{R}} | \Phi_I(\mathbf{R}) \rangle_{\mathbf{r}}$

SA-CASSCF, MS-CASPT2, semiempirical methods.

Adv. Chem. Phys., **121**, 439 (2002); Chem. Rev., **118**, 3305 (2018).

AIMS – Independent first generation approximation

FMS: all initial conditions are coupled from t = 0.

AIMS – Independent first generation approximation

AIMS: Independent First Generation Approximation (IFGA).

Summary: $QD \rightarrow FMS \rightarrow AIMS$

B. Mignolet and B. F. E. Curchod, J. Chem. Phys., 148, 134110 (2018).

Ab Initio Multiple Spawning – Summary

$$i\dot{\mathbf{C}}' = -i(\mathbf{S}^{-1})_{II} \left[\left(\mathbf{H}_{II} - i\dot{\mathbf{S}}_{II} \right) \mathbf{C}' + \sum_{J \neq I} \mathbf{H}_{IJ} \mathbf{C}^{J} \right]$$

using the saddle-point approximation

$$H_{kk'}^{IJ} = \langle \chi_k^{(I)} | \hat{T}_{nuc} | \chi_{k'}^{(J)} \rangle_{\mathsf{R}} \delta_{IJ} + E_I^{el} (\overline{\mathsf{R}}_{kk'}^{(IJ)}) \langle \chi_k^{(I)} | \chi_{k'}^{(J)} \rangle_{\mathsf{R}} \delta_{IJ} - \sum_{\rho=1}^{3N} \left(\mathsf{d}_{IJ} (\overline{\mathsf{R}}_{kk'}^{(IJ)}) \right)_{\rho} \langle \chi_k^{(I)} | \frac{1}{M_{\rho}} \frac{\partial}{\partial R_{\rho}} | \chi_{k'}^{(J)} \rangle_{\mathsf{R}} \delta_{IJ} - \sum_{\rho=1}^{3N} \left(\mathsf{d}_{IJ} (\overline{\mathsf{R}}_{kk'}^{(IJ)}) \right)_{\rho} \langle \chi_k^{(I)} | \frac{1}{M_{\rho}} \frac{\partial}{\partial R_{\rho}} | \chi_{k'}^{(J)} \rangle_{\mathsf{R}} \delta_{IJ} - \sum_{\rho=1}^{3N} \left(\mathsf{d}_{IJ} (\overline{\mathsf{R}}_{kk'}^{(IJ)}) \right)_{\rho} \langle \chi_k^{(I)} | \frac{1}{M_{\rho}} \frac{\partial}{\partial R_{\rho}} | \chi_{k'}^{(J)} \rangle_{\mathsf{R}} \delta_{IJ} - \sum_{\rho=1}^{3N} \left(\mathsf{d}_{IJ} (\overline{\mathsf{R}}_{kk'}^{(IJ)}) \right)_{\rho} \langle \chi_k^{(I)} | \frac{1}{M_{\rho}} \frac{\partial}{\partial R_{\rho}} | \chi_{k'}^{(J)} \rangle_{\mathsf{R}} \delta_{IJ} - \sum_{\rho=1}^{3N} \left(\mathsf{d}_{IJ} (\overline{\mathsf{R}}_{kk'}^{(IJ)}) \right)_{\rho} \langle \chi_k^{(I)} | \frac{1}{M_{\rho}} \frac{\partial}{\partial R_{\rho}} | \chi_{k'}^{(J)} \rangle_{\mathsf{R}} \delta_{IJ} - \sum_{\rho=1}^{3N} \left(\mathsf{d}_{IJ} (\overline{\mathsf{R}}_{kk'}^{(IJ)}) \right)_{\rho} \langle \chi_k^{(I)} | \frac{1}{M_{\rho}} \frac{\partial}{\partial R_{\rho}} | \chi_{k'}^{(J)} \rangle_{\mathsf{R}} \delta_{IJ} - \sum_{\rho=1}^{3N} \left(\mathsf{d}_{IJ} (\overline{\mathsf{R}}_{kk'}^{(IJ)}) \right)_{\rho} \langle \chi_k^{(I)} | \frac{1}{M_{\rho}} \frac{\partial}{\partial R_{\rho}} | \chi_{k'}^{(J)} \rangle_{\mathsf{R}} \delta_{IJ} - \sum_{\rho=1}^{3N} \left(\mathsf{d}_{IJ} (\overline{\mathsf{R}}_{kk'}^{(IJ)}) \right)_{\rho} \langle \chi_k^{(I)} | \frac{1}{M_{\rho}} \frac{\partial}{\partial R_{\rho}} | \chi_k^{(I)} \rangle_{\mathsf{R}} \delta_{IJ} - \sum_{\rho=1}^{3N} \left(\mathsf{d}_{IJ} (\overline{\mathsf{R}}_{kk'}^{(IJ)}) \right)_{\rho} \langle \chi_k^{(I)} | \chi_k^{(I)} \rangle_{\mathsf{R}} \delta_{IJ} - \sum_{\rho=1}^{3N} \left(\mathsf{d}_{IJ} (\overline{\mathsf{R}}_{kk'}^{(IJ)}) \right)_{\rho} \langle \chi_k^{(I)} | \chi_k^{(I)} \rangle_{\mathsf{R}} \delta_{IJ} - \sum_{\rho=1}^{3N} \left(\mathsf{d}_{IJ} (\overline{\mathsf{R}}_{kk'}^{(IJ)}) \right)_{\rho} \langle \chi_k^{(I)} | \chi_k^{(I)} \rangle_{\mathsf{R}} \delta_{IJ} - \sum_{\rho=1}^{3N} \left(\mathsf{d}_{IJ} (\overline{\mathsf{R}}_{kk'}^{(IJ)}) \right)_{\rho} \langle \chi_k^{(I)} | \chi_k^{(I)} \rangle_{\mathsf{R}} \delta_{IJ} - \sum_{\rho=1}^{3N} \left(\mathsf{d}_{IJ} (\overline{\mathsf{R}}_{kk'}^{(IJ)}) \right)_{\rho} \langle \chi_k^{(I)} | \chi_k^{(I)} \rangle_{\mathsf{R}} \delta_{IJ} - \sum_{\rho=1}^{3N} \left(\mathsf{d}_{IJ} (\overline{\mathsf{R}}_{kk'}^{(IJ)}) \right)_{\rho} \langle \chi_k^{(I)} | \chi_k^{(I)} \rangle_{\mathsf{R}} \delta_{IJ} - \sum_{\rho=1}^{3N} \left(\mathsf{d}_{IJ} (\overline{\mathsf{R}}_{kk'}^{(IJ)}) \right)_{\rho} \langle \chi_k^{(I)} | \chi_k^{(I)} \rangle_{\mathsf{R}} \delta_{IJ} - \sum_{\rho=1}^{3N} \left(\mathsf{d}_{IJ} (\overline{\mathsf{R}}_{kk'}^{(IJ)}) \right)_{\rho} \langle \chi_k^{(I)} | \chi_k^{(I)} \rangle_{\mathsf{R}} \delta_{IJ} - \sum_{\rho=1}^{3N} \left(\mathsf{d}_{IJ} (\overline{\mathsf{R}}_{kk'}^{(IJ)}) \right)_{\rho} \langle \chi_k^{(I)} | \chi_k^{(I)} \rangle$$

and the independent first generation.