Time-dependent density functional theory

E.K.U. Gross

Max-Planck Institute of Microstructure Physics, Halle (Saale), Germany

and

Fritz Haber Center The Hebrew University of Jerusalem

What do we want to describe?

What do we want to describe?

Electronic transport: Generic situation

Bias between L and R is turned on: $U(t) \longrightarrow V$

This Hamiltonian involves two approximations:

- Nuclei treated as clamped or moving on classical trajectories
- Photons treated as classical electromagnetic fields

Why don't we just solve the many-body Schrödinger equation

Example: Oxygen atom (8 electrons)

 $\Psi(\vec{r}_1, \cdots, \vec{r}_8)$ depends on 24 coordinates

rough table of the wavefunction

10 entries per coordinate: $\Rightarrow 10^{24}$ entries1 byte per entry: $\Rightarrow 10^{24}$ bytes 5×10^9 bytes per DVD: $\Rightarrow 2 \times 10^{14}$ DVDs10 g per DVD: $\Rightarrow 2 \times 10^{15}$ g of DVDs

 $= 2 \times 10^9$ t of DVDs

Two fundamentally different classes of ab-initio approaches:

- <u>Wave function approaches</u>
 - -- Configuration interaction (also stochastic CI)
 - -- Tensor networks
- "<u>Functional Theories</u>"

Two fundamentally different classes of ab-initio approaches:

- <u>Wave function approaches</u>
 - -- Configuration interaction (also stochastic CI)
 - -- Tensor networks
- "<u>Functional Theories</u>"

Write total energy as functional of a simpler quantity and minimize

"Functional Theories"MBPTRDMFTDFTG(r,r',t-t') $\gamma(r,r') = G(r,r',0^+)$ $\rho(r) = \gamma(r,r)$

ESSENCE OF DENSITY-FUNTIONAL THEORY

- Every observable quantity of a quantum system can be calculated from the density of the system ALONE
- The density of particles interacting with each other can be calculated as the density of an auxiliary system of <u>non</u>-interacting particles

ESSENCE OF DENSITY-FUNTIONAL THEORY

- Every observable quantity of a quantum system can be calculated from the density of the system ALONE
- The density of particles interacting with each other can be calculated as the density of an auxiliary system of <u>non-interacting particles</u>

Hohenberg-Kohn theorem (1964) Kohn-Sham theorem (1965) (for the ground state)

$$\hat{H}(t) = \hat{T}_{e} + \hat{W}_{ee} + \sum_{j,\alpha} - \frac{Z_{\alpha} e^{2}}{|r_{j} - R_{\alpha}|} + \vec{r}_{j} \cdot \vec{E}(t) \cdot \sin \omega t$$

Strong laser $(v_{laser}(t) \ge v_{en})$:

Non-perturbative solution of full TDSE required

Weak laser ($\mathbf{v}_{laser}(\mathbf{t}) \ll \mathbf{v}_{en}$):Calculate1. Linear density response $\rho_1(\vec{\mathbf{r}} \mathbf{t})$ 2. Dynamical polarizability $\alpha(\omega) = -\frac{e}{E} \int z \rho_1(\vec{\mathbf{r}}, \omega) d^3 r$ 3. Photo-absorption cross section $\sigma(\omega) = -\frac{4\pi\omega}{c} Im\alpha$

Photo-absorption in weak lasers

OUTLINE

- **Basic theorems of TDDFT**
- <u>TDDFT in the linear response regime:</u>
 - -- Dyson equation for the reponse function
 - -- Photo-absorption in molecules
 - -- Photo-absorption in solids
- Beyond the linear regime:
 - -- Transport through molecular junctions
 - -- Laser-driven spin dynamics in solids
 - -- Combination of TDDFT with Optimal Control Theory

Basic theorems of TDDFT

(E. Runge, E.K.U.G., PRL <u>52</u>, 997 (1984))

<u>1-1 correspondence (TD analogue of Hohenberg-Kohn theorem)</u>:

The time-dependent density determines uniquely $v(rt) \leftarrow \xrightarrow{1-1} \rho(rt)$ the time-dependent external potential and hence all physical observables for fixed initial state.

TDKS theorem:

The time-dependent density of the <u>interacting</u> system of interest can be calculated as density 2

$$\rho(\mathbf{rt}) = \sum_{j=1}^{N} \left| \varphi_{j}(\mathbf{rt}) \right|^{2}$$

of an auxiliary non-interacting (KS) system

$$i\hbar\frac{\partial}{\partial t}\phi_{j}(rt) = \left(-\frac{\hbar^{2}\nabla^{2}}{2m} + v_{s}[\rho](rt)\right)\phi_{j}(rt)$$

with the local potential

$$\mathbf{v}_{\mathrm{S}}\left[\rho(\mathbf{r}'\mathbf{t}')\right](\mathbf{rt}) = \mathbf{v}(\mathbf{rt}) + \int d^{3}\mathbf{r}' \frac{\rho(\mathbf{r}'\mathbf{t})}{|\mathbf{r}-\mathbf{r}'|} + \mathbf{v}_{\mathrm{xc}}\left[\rho(\mathbf{r}'\mathbf{t}')\right](\mathbf{rt})$$

Basic theorems of TDDFT

(E. Runge, E.K.U.G., PRL <u>52</u>, 997 (1984))

<u>1-1 correspondence (TD analogue of Hohenberg-Kohn theorem)</u>:

The time-dependent density determines uniquely $v(rt) \xleftarrow{1-1}{\leftarrow} \rho(rt)$ The time-dependent density determines uniquely the time-dependent external potential and hence all physical observables for fixed initial state.

TDKS theorem:

The time-dependent density of the interacting system of interest can be calculated as density 12

$$\varphi(\mathbf{rt}) = \sum_{j=1}^{N} \left| \varphi_{j}(\mathbf{rt}) \right|$$

of an auxiliary non-interacting (KS) system

$$i\hbar\frac{\partial}{\partial t}\varphi_{j}(rt) = \left(-\frac{\hbar^{2}\nabla^{2}}{2m} + v_{s}[\rho](rt)\right)\varphi_{j}(rt)$$

with the local potential

$$\mathbf{v}_{\mathrm{S}}\left[\rho(\mathbf{r}'\mathbf{t}')\right](\mathbf{r}\mathbf{t}) = \mathbf{v}(\mathbf{r}\mathbf{t}) + \int d^{3}\mathbf{r}'\frac{\rho(\mathbf{r}'\mathbf{t})}{|\mathbf{r}-\mathbf{r}'|} + \mathbf{v}_{\mathrm{xc}}\left[\rho(\mathbf{r}'\mathbf{t}')\right](\mathbf{r}\mathbf{t})$$

Proof of the 1-1 correspondence between $v(\vec{r}t)$ and $ho(\vec{r}t)$

$$\begin{array}{c|c} \mbox{define maps} & F: v(\vec{r}t) \mapsto \Psi(t) \\ \hline F: \Psi(t) \mapsto \rho(\vec{r}t) \\ \hline G \\ \hline & & \\ \hline v(\vec{r}t) & F_{solve tdSE} \\ & & \\ \psi(t_{\circ}) = \Psi_{\circ} \\ \hline & & \\ \hline & & \\ \Psi(t) & \rho(\vec{r}t) = \\ & & \\ \psi(t) | \hat{\rho}(\vec{r}) | \Psi(t) \\ & & \\ \hline & & \\ \hat{\rho}(\vec{r}) = \sum_{s} \hat{\psi}_{s}^{*}(\vec{r}) \hat{\psi}_{s}(\vec{r}) \\ \hline & & \\ \hline \hline & & \\ \hline & & \\ \hline & & \\ \hline \hline & & \\ \hline \hline & & \\ \hline \hline \\ \hline & & \\ \hline \hline \\ \hline & & \\ \hline \hline \hline \hline \hline \hline \\ \hline \\$$

i.e. $v(\vec{r} t) \neq v'(\vec{r} t) + c(t) \implies \rho(\vec{r} t) \neq \rho'(\vec{r} t)$

 $\frac{\text{proof (basic idea):}}{v(\vec{r} t) \longrightarrow \vec{j}(\vec{r} t) \longrightarrow \rho(\vec{r} t)}$ $v'(\vec{r} t) \longrightarrow \vec{j}'(\vec{r} t) \longrightarrow \rho'(\vec{r} t)$

use

$$i\frac{\partial \vec{j}(\vec{r},t)}{\partial t} = \left\langle \Psi(t) \mid \left[\hat{j}(\vec{r}), \hat{H}(t) \right] \mid \Psi(t) \right\rangle \quad \text{and} \quad \frac{\partial \rho(\vec{r},t)}{\partial t} = -\operatorname{div} j(\vec{r},t)$$
equation of motion for \vec{j}

to show that there exists an integer k>0 such that

 $= - \operatorname{div} j(\vec{r}, t)$

 $\Rightarrow \rho$ and ρ ' will become different from each other infinitesimally later than t₀

Simplest possible approximation for $v_{xc}[\rho](\vec{r}t)$

Adiabatic Local Density Approximation (ALDA)

$$\mathbf{v}_{xc}^{\text{ALDA}}(\vec{r} t) \coloneqq \mathbf{v}_{xc,\text{stat}}^{\text{hom}}(n) \Big|_{n=\rho(\vec{r} t)}$$

 $V_{xc,stat}^{hom}$ = xc potential of static homogeneous e-gas

Simplest possible approximation for $v_{xc} \rho(\vec{r}t)$

Adiabatic Local Density Approximation (ALDA)

$$\mathbf{v}_{xc}^{\text{ALDA}}(\vec{r} t) \coloneqq \mathbf{v}_{xc,\text{stat}}^{\text{hom}}(n) \Big|_{n=\rho(\vec{r} t)}$$

 $V_{xc,stat}^{hom}$ = xc potential of static homogeneous e-gas

Any approximate ground-state-DFT xc functional can be used to generate an adiabatic approximation for TDDFT

$$\mathbf{v}_{xc}^{\text{adiab}}\left(\vec{r} \ t\right) \coloneqq \mathbf{v}_{xc,GS}^{\text{approx}}[\mathbf{n}] \mid_{\mathbf{n}=\rho(\vec{r} \ t)}$$

LINEAR RESPONSE THEORY

$$\begin{split} t &= t_0 : \text{Interacting system in ground state of potential } v_0(r) \text{ with density } \rho_0(r) \\ t &> t_0 : \text{Switch on perturbation } v_1(r \ t) \ (\text{with } v_1(r \ t_0)=0). \\ \text{Density: } \rho(r \ t) &= \rho_0(r) + \delta\rho(r \ t) \end{split}$$

Consider functional $\rho[v](r t)$ defined by solution of interacting TDSE

Functional Taylor expansion of $\rho[v]$ around v_o :

$$\begin{split} \rho[\mathbf{v}](\mathbf{r} t) &= \rho[\mathbf{v}_{0} + \mathbf{v}_{1}](\mathbf{r} t) \\ &= \rho[\mathbf{v}_{0}](\mathbf{r} t) \\ &+ \int \frac{\delta \rho[\mathbf{v}](\mathbf{r} t)}{\delta \mathbf{v} (\mathbf{r}' t')} \Big|_{\mathbf{v}_{0}} \mathbf{v}_{1}(\mathbf{r}' t') d^{3}\mathbf{r}' dt' \qquad \longrightarrow \rho_{0}(\mathbf{r}) \\ &+ \frac{1}{2} \int \int \frac{\delta^{2} \rho[\mathbf{v}](\mathbf{r} t)}{\delta \mathbf{v} (\mathbf{r}' t') \delta \mathbf{v} (\mathbf{r}'' t'')} \Big|_{\mathbf{v}_{0}} \mathbf{v}_{1}(\mathbf{r}', t') \mathbf{v}_{1}(\mathbf{r}'', t'') d^{3}\mathbf{r}' d^{3}\mathbf{r}'' dt' dt'' \qquad \longrightarrow \rho_{2}(\mathbf{r} t) \\ &\vdots \end{split}$$

$$\rho_{1}(\mathbf{r},\mathbf{t}) = \text{linear density response of interacting system}$$
$$\chi(\mathbf{r},\mathbf{t},\mathbf{r}'\mathbf{t}') \coloneqq \frac{\delta\rho[\mathbf{v}](\mathbf{r},\mathbf{t})}{\delta_{\mathbf{V}}(\mathbf{r}'\mathbf{t}')}\Big|_{\mathbf{v}_{0}} = \text{density-density response function of interacting system}$$

Lehmann representation of the full response function

$$\chi(\mathbf{r},\mathbf{r}';\omega) = \lim_{\eta \to 0^{+}} \sum_{\mathbf{m}} \left(\frac{\langle 0|\hat{\rho}(\mathbf{r})|\mathbf{m}\rangle\langle \mathbf{m}|\hat{\rho}(\mathbf{r}')|0\rangle}{\omega - (E_{\mathbf{m}} - E_{\mathbf{0}}) + i\eta} - \frac{\langle 0|\hat{\rho}(\mathbf{r}')|\mathbf{m}\rangle\langle \mathbf{m}|\hat{\rho}(\mathbf{r})|0\rangle}{\omega + (E_{\mathbf{m}} - E_{\mathbf{0}}) + i\eta} \right)$$

with the exact many-body eigenfunctions and energies of the initial unperturbed interacting system Hamiltnian $H(t_0)|m\rangle = E_m |m\rangle$

 $\Rightarrow The exact linear density response$ $\rho_1(\omega) = \chi(\omega) v_1$

has poles at the exact excitation energies $\Omega = E_m - E_0$

Analogous functional $\rho_s[v_s](r t)$ for <u>non</u>-interacting system

$$\rho_{s}[v_{s}](r t) = \rho_{s}[v_{s,0} + v_{s,1}](r t) = \rho_{s}[v_{s,0}](r t) + \int \frac{\delta \rho_{s}[v_{s}](r t)}{\delta v_{s}(r' t')} \bigg|_{v_{s,0}} v_{s,1}(r' t') d^{3}r' dt' + \cdots$$

 $\chi_{S}(\mathbf{r} \mathbf{t}, \mathbf{r}' \mathbf{t}') \coloneqq \frac{\delta \rho_{S}[\mathbf{v}_{S}](\mathbf{r} \mathbf{t})}{\delta \mathbf{v}_{S}(\mathbf{r}' \mathbf{t}')} \bigg|_{\mathbf{v}_{S,0}} = \frac{\mathbf{density-density response function of}}{\underline{\mathbf{non}-\mathbf{interacting system}}}$

 $\chi_{\rm S}$ (r,r', ω) has also poles as function of ω , but at the non-interacting single-particle (KS) excitation energies.

<u>GOAL</u>: Find a way to calculate $\rho_1(r t)$ without explicitly evaluating $\chi(r t, r't')$ of the <u>interacting</u> system

starting point: Definition of xc potential

$$\mathbf{v}_{xc}[\rho](\mathbf{r} t) \coloneqq \mathbf{v}_{S}[\rho](\mathbf{r} t) - \mathbf{v}_{ext}[\rho](\mathbf{r} t) - \mathbf{v}_{H}[\rho](\mathbf{r} t)$$

 v_{xc} is well-defined through the non-interacting and the interacting 1-1 mapping.

$$\frac{\delta v_{xc}[\rho](r t)}{\delta \rho(r't')}\Big|_{\rho_0} = \left.\frac{\delta v_s[\rho](r t)}{\delta \rho(r't')}\right|_{\rho_0} - \left.\frac{\delta v_{ext}[\rho](r t)}{\delta \rho(r't')}\right|_{\rho_0} - \left.\frac{\delta(t-t')}{|r-r'|}\right|_{\rho_0}$$

$$f_{xc} + W_C = \chi_S^{-1} - \chi^{-1}$$

$$\chi_{\mathrm{S}} \bullet \left| \mathbf{f}_{\mathrm{xc}} + \mathbf{W}_{\mathrm{C}} = \chi_{\mathrm{S}}^{-1} - \chi^{-1} \right| \bullet \chi$$

$$\begin{split} \frac{\delta v_{xc}[\rho](r t)}{\delta \rho(r't')} \bigg|_{\rho_0} &= \left. \frac{\delta v_S[\rho](r t)}{\delta \rho(r't')} \right|_{\rho_0} - \left. \frac{\delta v_{ext}[\rho](r t)}{\delta \rho(r't')} \right|_{\rho_0} - \left. \frac{\delta(t-t')}{|r-r'|} \right. \\ \uparrow & \uparrow & \uparrow & \uparrow \\ f_{xc}(r t, r't') & \chi_S^{-1}(r t, r't') & \chi^{-1}(r t, r't') & W_C(r t, r't') \end{split}$$

$$\chi_{\rm S} \bullet \left| f_{\rm xc} + W_{\rm C} = \chi_{\rm S}^{-1} - \chi^{-1} \right| \bullet \chi$$

$$\chi_{\rm S} (f_{\rm xc} + W_{\rm C}) \chi = \chi - \chi_{\rm S}$$

$$\chi = \chi_{\rm S} + \chi_{\rm S} \left(W_{\rm ee} + f_{\rm xc} \right) \chi$$

Act with this operator equation on arbitrary $v_1(r t)$ and use $\chi v_1 = \rho_1$:

$$\rho_{1}(\mathbf{r} \mathbf{t}) = \int \mathbf{d}^{3}\mathbf{r}' \mathbf{d}\mathbf{t}' \chi_{s}(\mathbf{r} \mathbf{t}, \mathbf{r}' \mathbf{t}') \left[\mathbf{v}_{1}(\mathbf{r} \mathbf{t}) + \int \mathbf{d}^{3}\mathbf{r}'' \mathbf{d}\mathbf{t}'' \left\{ \mathbf{W}_{ee}(\mathbf{r}' \mathbf{t}', \mathbf{r}'' \mathbf{t}'') + \mathbf{f}_{xe}(\mathbf{r}' \mathbf{t}', \mathbf{r}'' \mathbf{t}'') \right\} \rho_{1}(\mathbf{r}'' \mathbf{t}'') \right]$$

- Exact integral equation for $\rho_1(r t)$, to be solved iteratively
- Need approximation for $f_{xc}(r't', r''t'') = \frac{\delta v_{xc}[\rho](r't')}{\delta \rho(r''t'')}\Big|_{\rho_0}$ (either for f_{xc} directly or for v_{xc})

Total photoabsorption cross section of the Xe atom versus photon energy in the vicinity of the 4d threshold.

Solid line: self-consistent time-dependent KS calculation [A. Zangwill and P. Soven, Phys. Rev. A 21, 1561 (1980)]; crosses: experimental data [R. Haensel, G. Keitel, P. Schreiber, and C. Kunz, Phys. Rev. 188, 1375 (1969)].

Photo-absorption in weak lasers

Photo-absorption in weak lasers

Looking at those frequencies, Ω , for which $\varrho_1(\omega)$ has poles, leads to a (non-linear) eigenvalue equation

M. Petersilka, U. J. Gossmann, E.K.U.G., PRL <u>76</u>, 1212 (1996) T. Grabo, M. Petersilka, EKUG, J. Mol. Struc. (Theochem) <u>501</u>, 353 (2000) M.E. Casida, Recent Advances in Density Functional Methods I, 155 (1996)

$$\sum_{q'} \left(A_{qq'}(\Omega) + \omega_q \delta_{qq'} \right) \beta_{q'} = \Omega \beta_q$$

where

$$\begin{split} \mathbf{A}_{qq'} &= \alpha_{q'} \int d^3 \mathbf{r} \int d^3 \mathbf{r}' \, \Phi_q(\mathbf{r}) \Biggl(\frac{1}{|\mathbf{r} - \mathbf{r}'|} + \mathbf{f}_{xc}(\mathbf{r}, \mathbf{r}', \Omega) \Biggr) \Phi_{q'}(\mathbf{r}') \\ & q = (\mathbf{j}, \mathbf{a}) \text{ double index} \qquad \alpha_q = \mathbf{f}_a - \mathbf{f}_j \\ & \Phi_q(\mathbf{r}) = \phi_a^*(\mathbf{r}) \phi_j(\mathbf{r}) \qquad \omega_q = \varepsilon_a - \varepsilon_j \end{split}$$

Atom	Experimental Excitation Energies ¹ S→ ¹ P	KS energy differences	TDDFT
	(in Ry)	$\Delta \in_{\mathrm{KS}} (\mathrm{Ry})$	
Be	0.388	0.259	0.391
Mg	0.319	0.234	0.327
Ca	0.216	0.157	0.234
Zn	0.426	0.315	0.423
Sr	0.198	0.141	0.210
Cd	0.398	0.269	0.391

from: M. Petersilka, U. J. Gossmann, E.K.U.G., PRL <u>76</u>, 1212 (1996)

Excitation energies of CO molecule [mH]

State	$\Omega_{ m expt~KS}$	KS-transition	$\Delta \epsilon_{ m KS}$	TDDFT
$A^{1}\Pi$	312.7	$5\sigma \rightarrow 2\pi$	252.3	310.2
а ³ П	232.3			221.4
Ι ¹ Σ-	363.1	$1\pi \rightarrow 2\pi$	362.6	362.6
e ³ Σ-	363.1			362.6
a' ³ Σ ⁺	312.7			314.9
D $^{1}\Delta$	375.9			380.7
d $^{3}\Delta$	344.0			339.6

Molecular excitation energies from time-dependent density-functional theory T Grabo, M Petersilka, EKU Gross, J Mol Struc-Theochem 501, 353 (2000).

Failures of ALDA in the linear response regime

• H₂ dissociation is incorrect:

$$E\left(^{1}\Sigma_{u}^{+}\right) - E\left(^{1}\Sigma_{g}^{+}\right) \xrightarrow[R \to \infty]{} 0 \quad \text{(in ALDA)}$$

(see: Gritsenko, van Gisbergen, Görling, Baerends, J. Chem. Phys. 113, 8478 (2000))

response of long chains strongly overestimated

(see: Champagne et al., J. Chem. Phys. <u>109</u>, 10489 (1998) and <u>110</u>, 11664 (1999))

- in periodic solids, $f_{xc}^{ALDA}(q, \omega, \rho) = c(\rho)$ whereas, for insulators, $f_{xc}^{exact} \xrightarrow[q \to 0]{} 1/q^2$ divergent.
- charge-transfer excitations not properly described (see: Dreuw et al., J. Chem. Phys. <u>119</u>, 2943 (2003))

Failures of ALDA in the linear response regime

• H₂ dissociation is incorrect:

$$E\left(^{1}\Sigma_{u}^{+}\right) - E\left(^{1}\Sigma_{g}^{+}\right) \xrightarrow[R \to \infty]{} 0 \quad (\text{in ALDA})$$

(see: Gritsenko, van Gisbergen, Görling, Baerends, J. Chem. Phys. <u>113</u>, 8478 (2000))

response of long chains strongly overestimated

(see: Champagne et al., J. Chem. Phys. <u>109</u>, 10489 (1998) and <u>110</u>, 11664 (1999))

- in periodic solids, $f_{xc}^{ALDA}(q, \omega, \rho) = c(\rho)$ whereas, for insulators, $f_{xc}^{exact} \xrightarrow[q \to 0]{} 1/q^2$ divergent.
- charge-transfer excitations not properly described (see: Dreuw et al., J. Chem. Phys. <u>119</u>, 2943 (2003))
 Those difficulties have largely been solved by ye

These difficulties have largely been solved by xc functionals more advanced than ALDA