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What do we want to describe?

System in laser field:
Generic situation
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Electronic transport: Generic situation

left lead L central right lead R
region C

Bias between L and R is turned on: U(t) —— V



This Hamiltonian involves two approximations:

 Nuclei treated as clamped or moving on classical trajectories

e Photons treated as classical electromagnetic fields



Why don’t we just solve the many-body
Schrodinger equation

Example: Oxygen atom (8 electrons)

\{J(f’, - f;) depends on 24 coordinates

1

rough table of the wavefunction

10 entries per coordinate: => 10%* entries

1 byte per entry: = 10** bytes
5x10° bytes per DVD: = 2x10'* DVDs
10 g per DVD: = 2x10"° g of DVDs

=2x10° t of DVDs



Two fundamentally different classes of ab-initio approaches:

 Wave function approaches
-- Configuration interaction
(also stochastic CI)

-- Tensor networks

e “Kunctional Theories”
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Write total energy as functional
of a simpler quantity and minimize
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numerically

heavy moderate light



ESSENCE OF DENSITY-FUNTIONAL THEORY

e Every observable quantity of a
quantum system can be calculated

from the density of the system
ALONE

e The density of particles interacting
with each other can be calculated as
the density of an auxiliary system of
non-interacting particles




ESSENCE OF DENSITY-FUNTIONAL THEORY

e Every observable quantity of a
quantum system can be calculated

from the density of the system
ALONE

e The density of particles interacting
with each other can be calculated as
the density of an auxiliary system of
non-interacting particles

Hohenberg-Kohn theorem (1964)
Kohn-Sham theorem (1965)

i Walter Kobhn, Nobel Lanreate,
(for the ground state) - UC Santa Barbara
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Strong laser (v, (t) = v,,) :

Non-perturbative solution of full TDSE required

Weak laser (v, (1) <<v,_,) :

Calculate 1.Linear density response p,(Ft)

2. Dynamical polarizability a(@) — _% J’ zZp, (f, (D) d’r

3. Photo-absorption cross section G((D) =— 475—@ Imo
C



Photo-absorption in weak lasers

continuum

r states

o(0)

| unoccupied
bound states

photo-absorption cross section

\ occupied i
bound states — 1: fz

4
Laser frequency o




OUTLINE

e Basic theorems of TDDFT

e TDDFT in the linear response regime:
-- Dyson equation for the reponse function
-- Photo-absorption in molecules
-- Photo-absorption in solids

* Beyond the linear regime:
-- Transport through molecular junctions
-- Laser-driven spin dynamics in solids
-- Combination of TDDFT with Optimal Control Theory




Basic theorems of TDDFT
(E. Runge, EXK.U.G., PRL 52, 997 (1984))

1-1 correspondence (TD analogue of Hohenberg-Kohn theorem):
1 The time-dependent density determines uniquely
V(rt) N — & (I‘t) the time-dependent external potential and hence all
physical observables for fixed initial state.

TDKS theorem:

The time-dependent density of the interacting system of interest can

be calculated as density N
p(rt)=2, (Pj(rt)
j=1

of an auxiliary non-interacting (KS) system

0,10~ <5 et Jo (o0
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with the local potential

Vg [p(r't')}(rt) = V(rt)+jd3r'p(r't) +v [p(r't')](rt)

' XC
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Proof of the 1-1 correspondence between V(Ft) and p(i‘ t)

definemaps |F: v(Tt)— W(t)|[F: P(t)— p(rt)

potentials F wave
. functions
V(ft) solve tdSE
with fixed
¥(t,)=",




to be shown that »@ is impossible

ie. VvEODEVE+clt) = pEt)zp’(rt)

proof (basic idea):
V(T t) - J(T' 1) - p(T )
V(T t) - J(TY) - pi(T )




use

EY (e (o) | [3(7) (]| (o) ane PIY — _divj(io

ot N ot .
equation of motion for j continuity equation
0 p o p'
to show that there exists an integer k>0 such that e ok
to to
p(t)
| p(t)

= p and p’ will become different

from each other infinitesimally

later than t, o(t)

I >




Simplest possible approximation for v__ [p](ft)

Adiabatic Local Density Approximation (ALDA)

VALDA (i: t): Vhom (n) ‘

XC XcC,stat N
n=p(rt)

hom
Xc,stat

Vv = xc potential of static homogeneous e-gas



Simplest possible approximation for v__ [p](ft)

Adiabatic Local Density Approximation (ALDA)

VALDA (i: t): Vhom (Il) ‘

XC XcC,stat N
n=p(rt)

hom = _ v¢ potential of static homogeneous e-gas

Xc,stat

\%

Any approximate ground-state-DFT xc functional can be
used to generate an adiabatic approximation for TDDFT

adiab approx
A (r t) Viecs IN] ‘
=p(T t)



LINEAR RESPONSE THEORY

t =t, : Interacting system in ground state of potential v, (r) with density p,(r)
t > t, : Switch on perturbation v,(r t) (with v,(r t,)=0).

Density: p(r t) = p,(r) + op(r t)
Consider functional p[v](r t) defined by solution of interacting TDSE

Functional Taylor expansion of p[v] around v,:

plv]lr )= ol + wllrt)

= plv,J(r ) — 0.0
+J'6§£V(]r'(z)t) v, (r't')d’r'dt — pi(rt)

Vo

1 62p-v](rt) o
— - ! ! " n d !d ndvdn
Jr2“E‘)V(r't')é‘)v(r"t")Vvl(r’t)Vl(r ) dede p,(rt)

0



pi(r,t) = linear density response of interacting system

oplv](rt)

5v (r't') )

= density-density response function of
interacting system

(rt,r't):=

Lehmann representation of the full response function

p(r)|m)(m[p(r')|0) _{0]p(r')[m){m ﬁ(r)\O>J

o) <Fin 3| L
X(r,r,(ﬂ) _llm2£ (D—(Em—Eo)+in - Q)-|-(Em—EO)-I—iT]

n—0" m

with the exact many-body eigenfunctions and energies of the initial
unperturbed interacting system Hamiltnian H(to )‘ m> =E_ ‘m>

— The exact linear density response
p1 (@) =Y (®) v

has poles at the exact excitation energies Q=E_ - E,



Analogous functional p[v ](r t) for non-interacting system

Ps [ ](rt [Vso+V81](rt [Vso] rt) ISPSS\[:(Sr],i,r)t) VS,I(r't') d’r'dt'+

v S0

xs(r t,r't') = op S[VS](r t) = density-density response function of
6vs(r' t') v, Don-interacting system

1s (r,r°,®) has also poles as function of ®, but at the non-interacting
single-particle (KS) excitation energies.



GOAL: Find a way to calculate p,(r t) without explicitly evaluating

% (r t,r't') of the interacting system

starting point: Definition of xc¢ potential

Vel (r t):=vi[p(r t)=ve [p] (r t) = v [p] (r )

v, is well-defined through the non-interacting and the interacting 1-1 mapping.

1-1 mapping for 1-1 mapping for non-
Interacting particles interacting particles
A\ J \ J
Y Y

VaulP)(r0) p(r21)- v, [p](r.t)
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ovelpl(rt) _ Svlpl(rt)  dvalp]rt) o 8(t—t)

Sp(r't') N - Sp(r't') N Sp(r't') N r—r'

I Y I Y

f (r t,r't') s (rtr't) X (r t,r't') W, (rt,1r't)

—1

—X

Xs * °X

s (T + We )1 =%~ %s



X =%s +%s (W, +f,)x

Act with this operator equation on arbitrary v,(r t) and use ) v;=p;:

(S5

p,(rt)=[d’r'dty (rt,r't) |:V1 (rt)+[d’r"dt"{W_(r't',r"t")+ £ (r't,r"t")}p, (r"t")}

e Exact integral equation for p,(r t), to be solved iteratively

* Need approximation for f (r't',r" t") _ OV [P"](z' t')
Sp(r"t") :

0

(either for f,. directly or for v,.)




Total photoabsorption cross section of the Xe atom versus photon
energy in the vicinity of the 4d threshold.

olw)[ I 1 T I T T

(Mb)
30 - _

20

10

fw (Ry)

Solid line: self-consistent time-dependent KS calculation [A. Zangwill and P.
Soven, Phys. Rev. A 21, 1561 (1980)]; crosses: experimental data [R. Haensel, G.
Keitel, P. Schreiber, and C. Kunz, Phys. Rev. 188, 1375 (1969)].
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Photo-absorption in weak lasers

Discrete poles

o B

continuum
r states

| unoccupied
bound states
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Looking at those frequencies, €2, for which ¢,(®) has poles,
leads to a (non-linear) eigenvalue equation

M. Petersilka, U. J. Gossmann, E.K.U.G., PRL 76, 1212 (1996)
T. Grabo, M. Petersilka, EKUG, J. Mol. Struc. (Theochem) 501, 353 (2000)
M.E. Casida, Recent Advances in Density Functional Methods I, 155 (1996)

Z(AQQ' (Q) T (DQSQQ' )BQ' — QBQ

q|

where

Ag =0y [dr[dr @, ()] —— + £, (1, Q) [0, ()

‘r—r'

q= (J, a) double index o =f —f

CI)q(r):(pZ(r)(pj(r) O, =&, — €




Atom

Be
Mg
Ca
Zn

Sr
Cd

Experimental Excitation
Energies 'S—'P
(in Ry)
0.388
0.319

0.216
0.426

0.198
0.398

KS energy
differences

Aeks (Ry)
0.259

0.234
0.157
0.315

0.141
0.269

TDDFT

0.391
0.327
0.234
0.423

0.210
0.391

from: M. Petersilka, U. J. Gossmann, E.K.U.G., PRL 76, 1212 (1996)



Excitation energies of CO molecule [mH]

State Qept ks KS-transition  Aegg TDDFT

A1 312.7 S6—2n 252.3 310.2
a 311 232.3 221.4
[ 13- 363.1 lnt—2n 362.6 362.6
e 3X 363.1 362.6
a’ 3t 312.7 314.9
D A 375.9 380.7
d3A 344.0 339.6

Molecular excitation energies from time-dependent density-functional theory
T Grabo, M Petersilka, EKU Gross, J Mol Struc-Theochem 501, 353 (2000).



Failures of ALDA in the linear response regime

* H, dissociation is incorrect:

E('z!)-E('z) > 0 (in ALDA)

R—0
(see: Gritsenko, van Gisbergen, Gorling, Baerends, J. Chem. Phys. 113, 8478 (2000))

* response of long chains strongly overestimated
(see: Champagne et al., J. Chem. Phys. 109, 10489 (1998) and 110, 11664 (1999))

* in periodic solids, fQLDA (q, , p) = C(p) whereas,

for insulators, 5. > 1/q° divergent.

q—0

* charge-transfer excitations not properly described
(see: Dreuw et al., J. Chem. Phys. 119, 2943 (2003))



Failures of ALDA in the linear response regime

* H, dissociation is incorrect:

E(l ZI )_ E(l zg ) y () (in ALDA)

R—0
(see: Gritsenko, van Gisbergen, Gorling, Baerends, J. Chem. Phys. 113, 8478 (2000))

 response of long chains strongly overestimated
(see: Champagne et al., J. Chem. Phys. 109, 10489 (1998) and 110, 11664 (1999))

: o ALDA
* in periodic solids,

(qa , P) — C(p) whereas,
> 1/ q2 divergent.

. exact
for insulators, fXC 1550

* charge-transfer excitations not properly described
(see: Dreuw et al., J. Chem. Phys. 119, 2943 (2003))

These difficulties have largely been solved by xc
functionals more advanced than ALDA



