

u08.IV PIIOS

-ท!

$\left[\varepsilon^{-1}(\mathbf{q}, \omega)=1+\chi_{\mathrm{S}}(\mathbf{q}, \omega) v(\mathbf{q})\left[1-\left(v(\mathbf{q})+f_{\mathrm{xc}}^{\text {approx }}(\mathbf{q}, \omega)\right) \chi_{\mathrm{S}}(\mathbf{q}, \omega)\right]^{-1}\right]$
Two problems of LDA/ALDA need to be fixed:

- Onset of absorption is dictated by χ_{S}, i.e. is identical to the
LDA gap for ω-independent kernel (such as ALDA)

$\varepsilon^{-1}(\mathbf{q}, \omega)=1+\chi_{\mathrm{S}}(\mathbf{q}, \omega) v(\mathbf{q})\left[1-\left(v(\mathbf{q})+f_{\mathrm{xc}}^{\text {approx }}(\mathbf{q}, \omega)\right) \chi_{\mathrm{S}}(\mathbf{q}, \omega)\right]^{-1}$
јәш.əэ de.ıңรұ00g

$\varepsilon^{-1}(\mathbf{q}, \omega)=1+\chi_{\mathrm{S}}(\mathbf{q}, \omega) v(\mathbf{q})\left[1-\left(v(\mathbf{q})+f_{\mathrm{xc}}^{\text {approx }}(\mathbf{q}, \omega)\right) \chi_{\mathrm{S}}(\mathbf{q}, \omega)\right]^{-1}$
[əuıว dentiocg

\dd

LLLAd

 The combined results confirmed that the luminescence mechanism for MOF-S should be

 calculated using the relativistic TDDFT and compared with those for spectra of MOF-5 in the electronically excited state have been

 relativistic DFT, leading to good agreement between the

 property of metal-organic framework MOF-5 were investigated ABSTRACT: The electronically excited state and luminescence

China
State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning,
 Relativistic Time-Dependent Density Functional Theory

dכJd/Бıo'כSi'MMM
06t0 L-乌

