Beyond 3D bulk

Time: 0.0 fs

$$
\begin{gathered}
\operatorname{abs}(\mathrm{m}) \\
0.1
\end{gathered}
$$

Cr monolayer

Influence of the approximation for the xc functional

Ordinary LSDA yields GLOBAL collinearity

$$
\begin{aligned}
& \overrightarrow{\mathrm{B}}_{\mathrm{xc}}(\mathrm{r})=\left(\begin{array}{c}
0 \\
0 \\
\mathrm{~B}_{\mathrm{xc}}(\mathrm{r})
\end{array}\right) \quad \overrightarrow{\mathrm{m}}(\mathrm{r})=\left(\begin{array}{c}
0 \\
0 \\
\mathrm{~m}(\mathrm{r})
\end{array}\right) \\
& \overrightarrow{\mathrm{B}}_{\mathrm{xc}}, \overrightarrow{\mathrm{~m}} \text { parallel to }\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) \quad \text { everywhere in space }
\end{aligned}
$$

Construction of non-collinear LSDA

Kübler, Sandratskii (1980s)

$\int \rho(r) v(r) d^{\frac{1}{r}}-\int \bar{m}(r) \cdot \vec{B}(r) d d^{\frac{1}{r}}$

$$
\equiv \sum_{a, p=1} \rho_{a, f}(r) v_{\alpha, f}(r)
$$

$\{\rho(\mathrm{r}), \overrightarrow{\mathrm{m}}(\mathrm{r})\}: 4$ independent functions
$\rho_{\alpha \beta}$ is Hermitian $\Rightarrow 4$ independent functions

Non-collinear LSDA:

$\overrightarrow{\mathrm{r}}$ given point in space:
(1) Find unitary matrix $U(r)$ such that

$$
\mathrm{U}^{+}(\mathrm{r})\left(\rho_{\alpha \beta}\right) \mathrm{U}(\mathrm{r})=\left(\begin{array}{cc}
\mathrm{n}_{\uparrow}(\mathrm{r}) & 0 \\
0 & \mathrm{n}_{\downarrow}(\mathrm{r})
\end{array}\right)
$$

(2) Calculate $\mathrm{V}_{\mathrm{xc}}^{\uparrow}(\mathrm{r})$ and $\mathrm{V}_{\mathrm{xc}}^{\downarrow}(\mathrm{r})$ from $\left\{\mathrm{n}_{\uparrow}, \mathrm{n}_{\downarrow}\right\}$
using the normal LSDA expressions
(3) $\left(\mathrm{v}_{\mathrm{xc}}^{\mathrm{\alpha} \mathrm{\beta}}\right)=\mathrm{U}(\mathrm{r})\left(\begin{array}{cc}\mathrm{v}_{\mathrm{xc}}^{\uparrow}(\mathrm{r}) & 0 \\ 0 & \mathrm{v}_{\mathrm{xc}}^{\downarrow}(\mathrm{r})\end{array}\right) \mathrm{U}^{+}(\mathrm{r})$
in this approximation $\overrightarrow{\mathrm{B}}_{\mathrm{xc}}(\mathrm{r})$ and $\overrightarrow{\mathrm{m}}(\mathrm{r})$ may change their direction in space, but locally they are always parallel

Problem: In all standard approximations of E_{xc} (LSDA, GGAs) $m(r)$ and $B_{x c}(r)$ are locally parallel

S. Sharma, J.K. Dewhurst, C. Ambrosch-Draxl, S. Kurth, N. Helbig, S. Pittalis, S. Shallcross, L. Nordstroem E.K.U.G., Phys. Rev. Lett. 98, 196405 (2007)

Why is that important?

Ab-initio description of spin dynamics:
microscopic equation of motion (following from TDSDFT)

$$
\dot{\overrightarrow{\mathrm{m}}}(\overrightarrow{\mathrm{r}}, \mathrm{t})=\overrightarrow{\mathrm{m}}(\overrightarrow{\mathrm{r}}, \mathrm{t}) \times \overrightarrow{\mathrm{B}}_{\mathrm{XC}}(\overrightarrow{\mathrm{r}}, \mathrm{t})-\vec{\nabla} \cdot \overrightarrow{\mathrm{J}}_{\mathrm{S}}(\overrightarrow{\mathrm{r}}, \mathrm{t})+\mathrm{SOC}
$$

in absence of external magnetic field
$\overrightarrow{\mathrm{J}}_{\mathrm{S}}(\mathrm{r}, \mathrm{t})=\langle\hat{\sigma} \otimes \hat{\mathrm{p}}\rangle \quad$ spin current tensor
Consequence of local collinearity: $m \times B_{x c}=0$:
\rightarrow possibly wrong spin dynamics
\rightarrow how important is this term in real-time dynamics?

Construction of a novel xc functional for which $m(r)$ and $B_{x c}(r)$ are not locally parallel

Enforce property of the exact xc functional:

$$
\boldsymbol{B}_{x c}^{\text {exact }}(\boldsymbol{r})=\nabla \times A_{x c}^{\text {exact }}(\boldsymbol{r})
$$

K. Capelle, E.K.U. Gross, PRL 78, 1872 (1997)

By virtue of Helmholtz' theorem, any vector field can be decomposed as:

$$
\boldsymbol{B}_{x c}^{G G A}(\boldsymbol{r})=\nabla \times A_{x c}(\boldsymbol{r})+\nabla \phi(r)
$$

Enforce exact property by subtracting source term!

Explicit construction:

S. Sharma, E.K.U. Gross, A. Sanna, K. Dewhurst, JCTC14, 1247 (2018)

$$
\begin{aligned}
& \nabla^{2} \phi(\boldsymbol{r})=4 \pi \nabla \cdot B_{x c}^{G G A}(\boldsymbol{r}) \\
& \tilde{B}_{x c}(\boldsymbol{r}) \cong B_{x c}^{G G A}(\boldsymbol{r})-\frac{1}{4 \pi} \nabla \phi(\boldsymbol{r}) \\
& B_{x c}^{S F}(\boldsymbol{r})=s \tilde{B}_{x c}(\boldsymbol{r})
\end{aligned}
$$

Scaling factor, s, only depends on underlying functional (GGA/LSDA), nothing else

Left panel: Local xc torque for bulk Ni in (111) plane. Right panel: Local xc torque for 3 ML $\mathrm{Ni} @ 5 \mathrm{ML}$ Pt in the (110) plane. The arrows indicate the direction and colors the magnitude.

The vector field B_{xc} for $\mathrm{BaFe}_{2} \mathrm{As}_{2}$ projected in a plane containing Fe atoms. Plot (a) is LSDA and plot (b) is source-free LSDA. The colored plane shows the magnitude of B_{xc} and the arrows indicate the direction. The black field lines originate from a regular grid in the plane and follow the vector field. LSDA field lines show a plane of magnetic monopoles while making LSDA source-free leads to more complicated but physical field lines. The arrows indicate that the removal of the source term leads to enhancement of non-collinearity.

Magnetic moment per atom. Calculations are performed using LSDA+U, PBE-GGA+U, LSDA ${ }_{s F}+U$ and PBE$\mathrm{GGA}_{\mathrm{SF}}+\mathrm{U}$.

Material	Expt	LSDA	PBE-GGA	LSDA $_{\text {SF }}$	PBE-GGA
PrFeAsO	Fe: 0.5	1.40	1.9	0.65	0.63
	Pr: 0.87	0.30	0.30	0.81	0.83
NdFeAsO	Fe: 0.54	1.42	1.84	0.50	0.61
	Nd: 0.9	2.44	1.25	0.80	0.89

(b)

(a) Middle panel shows the total moment (red) and the bottom panel x (green), y (brown) and z (blue) projected moments for bulk Ni as a function of time. Dashed lines are the results obtained using the ALSDA and full lines the results obtained using the source-free functional. (b) The same as (a) but for bulk Co.

Optically induced spin transfer (OISTR)

P. Elliott, T. Mueller, K. Dewhurst, S. Sharma, E.K.U.Gross, Scientific Reports 6, 38911 (2016)
K. Dewhurst, P. Elliott, S. Shallcross, E.K.U. Gross, S. Sharma, Nano Lett. 18, 1842 (2018)

Global moment $|\mathrm{M}(\mathrm{t})|$ nearly preserved
Local moments around each atom change

NiMnSb

$\mathrm{Mn}_{3} \mathrm{Ga}$ (ferri-magnet)

Ga
 Mn

TDDFT prediction for $\mathrm{Mn}_{3} \mathrm{Ga}$: ferri \rightarrow ferro transition within 4 fs

$\mathrm{Mn}_{3} \mathrm{Ga}$ (ferri-magnet)

$$
\begin{aligned}
& \text { Ga } \\
& \text { Mn }
\end{aligned}
$$

TDDFT prediction for $\mathrm{Mn}_{3} \mathrm{Ga}$: ferri \rightarrow ferro transition within 4 fs OISTR experimentally confirmed! (Aeschlimann group, 2018)

Future aspects in the field of laser-driven spin dynamics:

- Include relaxation processes due to el-el scattering
- in principle contained in TDDFT,
- but not with adiabatic xc functionals
- need xc functional approximations with memory $\mathrm{V}_{\mathrm{xc}}\left[\rho\left(\mathrm{r}^{\prime} \mathrm{t}^{\prime}\right)\right](\mathrm{rt})$
- Include relaxation processes due to el-phonon scattering
- Include relaxation due to radiative effects simultaneous propagation of TDKS and Maxwell equations
- Include dipole-dipole interaction to describe motion of domains construct approximate xc functionals which refer to the dipole int
- Optimal-control theory to find optimized laser pulses to selectively demagnetize/remagnetize, i.e. to switch, the magnetic moment
- Create Skyrmions with suitably shaped laser pulses

Optimal control using short laser pulses

Review Article on Quantum Optimal Control Theory:
J. Werschnik, E.K.U. Gross, J. Phys. B 40, R175-R211 (2007)

Optimal Control Theory (OCT)

Normal question:

What happens if a system is exposed to a given laser pulse?

Inverse question (solved by OCT):

Which is the laser pulse that achieves a prescribed goal (target)?
possible targets: a) system should end up in a given final state ϕ_{f} at the end of the pulse
b) wave function should follow a given trajectory in Hilbert space
c) density should follow a given classical trajectory $\mathbf{r}(\mathbf{t})$

Optimal control of static targets (standard formulation)

For given target state $\boldsymbol{\Phi}_{\mathrm{f}}$, maximize the functional:

$$
\mathrm{J}_{1}=\left|\left\langle\Psi(\mathrm{T}) \mid \Phi_{\mathrm{f}}\right\rangle\right|^{2}=\left\langle\Psi(\mathrm{T}) \mid \Phi_{\mathrm{f}}\right\rangle\left\langle\Phi_{\mathrm{f}} \mid \Psi(\mathrm{T})\right\rangle=\langle\Psi(\mathrm{T}) \hat{\mathrm{O}} \mid \Psi(\mathrm{T})\rangle
$$

Optimal control of static targets (standard formulation)

For given target state $\boldsymbol{\Phi}_{\mathrm{f}}$, maximize the functional:

$$
\left.J_{1}=\left.\left\langle\Psi(\mathrm{T}) \Phi_{i}\right\rangle\right|^{2}=\left\langle\Psi(\mathrm{T}) \cdot \varphi_{i}\right\rangle\left\langle\Phi_{i}\right) \psi(\mathrm{T})\right\rangle=\langle\Psi(\mathrm{T}) \hat{\hat{O}} \mid \Psi(\mathrm{T})\rangle
$$

Optimal control of static targets (standard formulation)

For given target state $\boldsymbol{\Phi}_{\mathrm{f}}$, maximize the functional:

$$
\left.\mathrm{J}_{1}=\left|\left\langle\Psi(\mathrm{T}) \mid \Phi_{\mathrm{f}}\right\rangle\right|^{2}=\left\langle\Psi(\mathrm{T}) \Phi_{\hat{\mathrm{f}}}\right\rangle\left\langle\Phi_{\mathrm{f}}\right\rangle \Psi(\mathrm{T})\right\rangle=\langle\Psi(\mathrm{T})| \hat{\mathrm{O}}|\Psi(\mathrm{~T})\rangle
$$

with the constraints:

$$
\mathrm{J}_{2}=-\alpha\left[\int_{0}^{\mathrm{T}} \mathrm{dt} \varepsilon^{2}(\mathrm{t})-\mathrm{E}_{0}\right] \quad \mathbf{E}_{\mathbf{0}}=\text { given fluence }
$$

Optimal control of static targets (standard formulation)

For given target state $\boldsymbol{\Phi}_{\mathrm{f}}$, maximize the functional:

$$
\begin{aligned}
& \left.\mathrm{J}_{1}=\left|\left\langle\Psi(\mathrm{T}) \mid \Phi_{\mathrm{f}}\right\rangle\right|^{2}=\left\langle\Psi(\mathrm{T}) \mid \Phi_{\mathrm{f}}\right\rangle\left\langle\Phi_{\mathrm{f}}\right\rangle \Psi(\mathrm{T})\right\rangle=\langle\Psi(\mathrm{T})| \hat{\mathrm{O}}|\Psi(\mathrm{~T})\rangle \\
& \text { ô }
\end{aligned}
$$

with the constraints:

$$
\begin{aligned}
& \mathrm{J}_{2}=-\alpha\left[\int_{0}^{\mathrm{T}} \mathrm{dt} \varepsilon^{2}(\mathrm{t})-\mathrm{E}_{0}\right] \quad \mathbf{E}_{\mathbf{0}}=\text { given fluence } \\
& \mathrm{J}_{3}[\varepsilon, \Psi, \chi]=-2 \operatorname{Im} \int_{0}^{\mathrm{T}} \mathrm{dt}\langle\chi(\mathrm{t})|-\mathrm{i} \partial_{\mathrm{t}}-[\hat{\mathrm{T}}+\hat{\mathrm{V}}-\mu \varepsilon(\mathrm{t})]|\Psi(\mathrm{t})\rangle
\end{aligned}
$$

Optimal control of static targets (standard formulation)

For given target state $\boldsymbol{\Phi}_{\mathrm{f}}$, maximize the functional:

$$
\begin{aligned}
& \left.\mathrm{J}_{1}=\left|\left\langle\Psi(\mathrm{T}) \mid \Phi_{\mathrm{f}}\right\rangle\right|^{2}=\left\langle\Psi(\mathrm{T}) \mid \Phi_{\mathrm{f}}\right\rangle\left\langle\Phi_{\mathrm{f}}\right\rangle \Psi(\mathrm{T})\right\rangle=\langle\Psi(\mathrm{T}) \hat{\mathrm{O}} \mid \Psi(\mathrm{T})\rangle \\
& \text { ô }
\end{aligned}
$$

with the constraints:

$$
\begin{aligned}
& \mathrm{J}_{2}=-\alpha\left[\int_{0}^{\mathrm{T}} \mathrm{dt} \varepsilon^{2}(\mathrm{t})-\mathrm{E}_{0}\right] \quad \mathbf{E}_{\mathbf{0}}=\text { given fluence } \\
& \mathrm{J}_{3}[\varepsilon, \Psi, \chi]=-2 \operatorname{Im} \int_{0}^{\mathrm{T}} \mathrm{dt}\left\langle\chi(\mathrm{t}) \frac{-\mathrm{i} \partial_{\mathrm{t}}-[\hat{\mathrm{T}}+\hat{\mathrm{V}}-\mu \varepsilon(\mathrm{t})]|\Psi(\mathrm{t})\rangle}{\text { TDSE }}\right.
\end{aligned}
$$

Optimal control of static targets (standard formulation)

For given target state $\boldsymbol{\Phi}_{\mathrm{f}}$, maximize the functional:

$$
\mathrm{J}_{1}=\left|\left\langle\Psi(\mathrm{T}) \mid \Phi_{\mathrm{f}}\right\rangle\right|^{2}=\left\langle\Psi(\mathrm{T}) \underset{\hat{\mathrm{O}}}{\left.\Phi_{\mathrm{f}}\right\rangle\left\langle\Phi_{\mathrm{f}} \mid \Psi(\mathrm{T})\right\rangle=\langle\Psi(\mathrm{T})| \hat{\mathrm{O}}|\Psi(\mathrm{~T})\rangle}\right.
$$

with the constraints:

$$
\mathrm{J}_{2}=-\alpha\left[\int_{0}^{\mathrm{T}} \mathrm{dt} \varepsilon^{2}(\mathrm{t})-\mathrm{E}_{0}\right] \quad \mathbf{E}_{\mathbf{0}}=\text { given fluence }
$$

$$
\mathrm{J}_{3}[\varepsilon, \Psi, \chi]=-2 \operatorname{Im} \int_{0}^{\mathrm{T}} \mathrm{dt}\langle\chi(\mathrm{t})|-\mathrm{i} \partial_{\mathrm{t}}-[\hat{\mathrm{T}}+\hat{\mathrm{V}}-\mu \varepsilon(\mathrm{t})]|\Psi(\mathrm{t})\rangle
$$

GOAL: Maximize $\mathbf{J}=\mathbf{J}_{1}+\mathrm{J}_{\mathbf{2}}+\mathrm{J}_{\mathbf{3}}$

Set the total variation of $J=J_{1}+J_{2}+J_{3}$ equal to zero:

Control equations

1. Schrödinger equation with initial condition:
$\delta_{\chi} J=0 \rightarrow \quad i \partial_{t} \psi(t)=\hat{H}(t) \psi(t), \quad \psi(0)=\phi$
2. Schrödinger equation with final condition:
$\delta_{\psi} J=0 \rightarrow \quad i \partial_{t} \chi(t)=\hat{H}(t) \chi(t), \quad \chi(T)=\hat{O} \psi(T)$
3. Field equation:
$\delta_{\varepsilon} J=0 \rightarrow \varepsilon(t)=\frac{1}{\alpha} \operatorname{Im}\langle\chi(t)| \hat{\mu}|\psi(t)\rangle$

Set the total variation of $J=J_{1}+J_{2}+J_{3}$ equal to zero:

Control equations

Algorithm

1. Schrödinger equation with initial condition:
$\delta_{\chi} J=0 \rightarrow \quad i \partial_{t} \psi(t)=\hat{H}(t) \psi(t), \quad \psi(0)=\phi$
2. Schrödinger equation with final condition:
$\delta_{\psi} J=0 \rightarrow \quad i \partial_{t} \chi(t)=\hat{H}(t) \chi(t), \quad \chi(T)=\hat{O} \psi(T) \quad$ Backward propagation
3. Field equation:
$\delta_{\varepsilon} J=0 \rightarrow \varepsilon(t)=\frac{1}{\alpha} \operatorname{Im}\langle\chi(t)| \hat{\mu}|\psi(t)\rangle$

Algorithm monotonically convergent: W. Zhu, J. Botina, H. Rabitz, JCP 108, 1953 (1998))

Quantum ring: Control of circular current

TDSE: $\quad i \hbar \frac{\partial}{\partial t} \Psi(\mathbf{r}, t)=\left[\hat{H}_{0}+e \mathbf{r} \epsilon(t)\right] \Psi(\mathbf{r}, t)$

$$
\hat{H}_{0}=-\frac{\hbar^{2}}{2 m^{*}} \nabla^{2}+\frac{1}{2} m^{*} \omega_{0}^{2} r^{2}+V_{0} e^{-r^{2} / d^{2}}
$$

$$
\epsilon(t)=\left(\epsilon_{x}(t), \epsilon_{y}(t)\right)
$$

Control of currents

$|\psi(t)|^{2}$ and $j(t)$

$I \sim \mu A$

E. Räsänen, A. Castro, J. Werschnik, A. Rubio, E.K.U.G., PRL 98, 157404 (2007)

OPTIMAL CONTROL OF TIME-DEPENDENT TARGETS

Maximize $\quad \mathrm{J}=\mathrm{J}_{1}+\mathrm{J}_{2}+\mathrm{J}_{3}$

$$
\begin{aligned}
& \mathrm{J}_{1}[\Psi]=\frac{1}{\mathrm{~T}} \int_{0}^{\mathrm{T}} \mathrm{dt}\langle\Psi(\mathrm{t})| \hat{\mathrm{O}}(\mathrm{t})|\Psi(\mathrm{t})\rangle \\
& \mathrm{J}_{2}=-\alpha\left[\int_{0}^{\mathrm{T}} \mathrm{dt} \varepsilon^{2}(\mathrm{t})-\mathrm{E}_{0}\right]
\end{aligned}
$$

$$
\mathrm{J}_{3}[\varepsilon, \Psi, \chi]=-2 \operatorname{Im} \int_{0}^{\mathrm{T}} \mathrm{dt}\langle\chi(\mathrm{t})|-\mathrm{i} \partial_{\mathrm{t}}-[\hat{\mathrm{T}}+\hat{\mathrm{V}}-\mu \varepsilon(\mathrm{t})]|\Psi(\mathrm{t})\rangle
$$

Set the total variation of $J=J_{1}+J_{2}+J_{3}$ equal to zero:

Control equations

Algorithm

1. Schrödinger equation with initial condition:
$\delta_{\chi} J=0 \rightarrow \quad i \partial_{t} \psi(t)=\hat{H}(t) \psi(t), \quad \psi(0)=\phi$
2. Schrödinger equation with final condition:
$\delta_{\psi} J=0 \rightarrow \begin{aligned} & \text { Inhomogenous TDSE : } \\ & {\left[i \partial_{t}-\hat{H}(t)\right] \chi(t)=-\frac{i}{T} \hat{O}(t) \psi(t), \quad \chi(T)=0}\end{aligned}$
3. Field equation:
$\delta_{\varepsilon} J=0 \rightarrow \quad \varepsilon(t)=\frac{1}{\alpha} \operatorname{Im}\langle\chi(t)| \hat{\mu}|\psi(t)\rangle$

Algorithm monotonically convergent:
I. Serban, J. Werschnik, E.K.U.Gross., Phys. Rev. A 71, 053810 (2005)

Control path in real space

$$
\hat{\mathrm{O}}(\mathrm{t})=\delta\left(\mathrm{r}-\mathrm{r}_{0}(\mathrm{t})\right) \approx \frac{1}{\sqrt{2 \pi \sigma^{2}}} \mathrm{e}^{-\left(\mathrm{r}-\mathrm{r}_{0}(\mathrm{t})\right)^{2} / 2 \sigma^{2}}
$$

with given trajectory $r_{0}(t)$.

Algorithm maximizes the density along the path $r_{0}(t)$:
I. Serban, J. Werschnik, E.K.U.G. Phys. Rev. A 71, 053810 (2005)

Control of charge transfer along selected pathways

Trajectory 1

Trajectory 2

Time-evolution of wavepacket with the optimal laser pulse for trajectory 1

Lowest six eigenstates

Populations of eigenstates

Trajectory 2

Control of many-body systems

- Formally the same OCT equations
- Problem: For more than 6 degrees of freedom, the full solution of the TDSE becomes computationally too hard

Control of many-body systems

- Formally the same OCT equations
- Problem: For more than 6 degrees of freedom, the full solution of the TDSE becomes computationally too hard
\longrightarrow Instead of solving the many-body TDSE, combine OCT with TDDFT
A. Castro, J. Werschnik, E.K.U. Gross, PRL 109, 153603 (2012)

Control of many-body systems

- Formally the same OCT equations
- Problem: For more than 6 degrees of freedom, the full solution of the TDSE becomes computationally too hard
\longrightarrow Instead of solving the many-body TDSE, combine OCT with TDDFT
A. Castro, J. Werschnik, E.K.U. Gross, PRL 109, 153603 (2012)

Important: Control target must be formulated in terms of the density!

Optimal Control of Harmonic Generation (example: Helium Atom)

Enhancement of a single harmonic peak

Harmonic Spectrum:

$$
\mathrm{H}(\omega)=\left|\int \mathrm{dte} \frac{\mathrm{iot}}{} \frac{\mathrm{~d}^{2}}{\mathrm{dt}^{2}}\left\{\int \mathrm{~d}^{3} \mathrm{r} z \rho(\overrightarrow{\mathrm{r}}, \mathrm{t})\right\}\right|^{2}
$$

Maximize: $\quad \mathrm{F}=\sum_{\mathrm{k}} \alpha_{\mathrm{k}} \max _{\omega \in\left[\mathrm{ko}_{0}-\beta, \mathrm{k} \mathrm{co}_{0}+\beta\right]} \mathrm{H}(\omega)$
To maximize, e.g., the $7^{\text {th }}$ harmonic of ω_{0}, choose coefficients as
$\alpha_{7}=4, \quad \alpha_{3}=\alpha_{5}=\alpha_{9}=\alpha_{11}=-1$

Measure of enhancement: Compare with reference pulse:

$$
\varepsilon_{\text {ref }}(\mathrm{t})=\varepsilon_{0} \cos \left(\frac{\pi}{2} \frac{2 \mathrm{t}-\mathrm{T}}{\mathrm{~T}}\right) \cos (\omega \mathrm{t})
$$

$$
\kappa_{\mathrm{j}}=\frac{\max _{\omega \in\left[j \omega_{0}-\beta, \mathrm{j} \omega_{0}+\beta\right]} \mathrm{H}(\omega)}{\mathrm{H}_{\mathrm{ref}}\left(\mathrm{j} \omega_{0}\right)}
$$

Harmonic spectrum of reference pulse for hydrogen atom

Results for Hydrogen atom

A. Castro, A. Rubio, E.K.U.Gross, Eur. Phys. J. B 88, 191 (2015).

Harmonic order $\left(\omega / \omega_{0}\right)$

Target: 13 $\mathrm{K}_{13}=6$

$\begin{array}{llllll}9 & 11 & 13 & 15 & 17 & 19\end{array}$
Harmonic order (ω / ω_{0})

Results for Helium atom

(Using TDDFT with EXX functional)
A. Castro, A. Rubio, E.K.U.Gross, Eur. Phys. J. B 88, 191 (2015).

Lecture Notes in Physics $\mathbf{7 0 6}$ (Springer, 2006)

Lecture Notes in Physics 837
Miguel A. L. Marques
Neepa T. Maitra
Fernando M. S. Nogueira
Ebehard K. U. Gross
Angel Rubio Editors

> Fundamentals of Time-Dependent Density Functional Theory

Lecture Notes in Physics $\mathbf{8 3 7}$ (Springer, 2012)

