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Influence of the  approximation for the xc functional



Ordinary LSDA yields GLOBAL collinearity
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Construction of non-collinear LSDA

Kübler, Sandratskii (1980s)
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Non-collinear LSDA:

r
!

given point in space:

� Find unitary matrix U(r) such that

� Calculate
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Problem: In all standard approximations of Exc (LSDA, GGAs)

m(r) and Bxc(r) are locally parallel 

S. Sharma, J.K. Dewhurst, C. Ambrosch-Draxl, S. Kurth, N. Helbig, S. Pittalis, 

S. Shallcross, L. Nordstroem E.K.U.G., Phys. Rev. Lett. 98, 196405 (2007)



Why is that important?

Ab-initio description of spin dynamics:

microscopic equation of motion (following from TDSDFT)

XC Sm(r, t) m(r, t) B (r, t) J (r, t) SOC= ´ - Ñ× +

! ! "! ! ! ! ! #$

in absence of external magnetic field

Consequence of local collinearity:  m×Bxc = 0: 

→ possibly wrong spin dynamics

→ how important is this term in real-time dynamics?

S
ˆˆJ (r, t) p= sÄ

!
spin current tensor



Construction of a novel xc functional for which 

m(r) and Bxc(r) are not locally parallel 

K. Capelle, E.K.U. Gross, PRL 78, 1872 (1997)

Enforce property of the exact xc functional:
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By virtue of Helmholtz’ theorem, any vector field can be

decomposed as: 

Enforce exact property by subtracting source term!
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Scaling factor, s, only depends on underlying 

functional (GGA/LSDA), nothing else

S. Sharma, E.K.U. Gross, A. Sanna, K. Dewhurst, JCTC14, 1247 (2018)



Left panel: Local xc torque for bulk Ni in (111) plane. Right panel: Local xc torque for 3ML

Ni@5ML Pt in the (110) plane. The arrows indicate the direction and colors the

magnitude.



The vector field Bxc for BaFe2As2 projected in a plane containing Fe atoms. Plot

(a) is LSDA and plot (b) is source-free LSDA. The colored plane shows the magnitude of

Bxc and the arrows indicate the direction. The black field lines originate from a regular

grid in the plane and follow the vector field. LSDA field lines show a plane of magnetic

monopoles while making LSDA source-free leads to more complicated but physical field

lines. The arrows indicate that the removal of the source term leads to enhancement of

non-collinearity.







Magnetic moment per atom. Calculations are performed using LSDA+U, PBE-GGA+U, LSDASF + U and PBE-

GGASF + U. 

Material Expt LSDA PBE-GGA LSDASF PBE-GGASF

PrFeAsO Fe: 0.5 1.40 1.9 0.65 0.63

Pr: 0.87 0.30 0.30 0.81 0.83

NdFeAsO Fe: 0.54 1.42 1.84 0.50 0.61

Nd: 0.9 2.44 1.25 0.80 0.89



(a) Middle panel shows the total moment (red) and the bottom panel x (green), y (brown)

and z (blue) projected moments for bulk Ni as a function of time. Dashed lines are the

results obtained using the ALSDA and full lines the results obtained using the source-free

functional. (b) The same as (a) but for bulk Co.

(a) (b)



Optically induced spin transfer

(OISTR) 

P. Elliott, T. Mueller, K. Dewhurst, S. Sharma, E.K.U.Gross, 

Scientific Reports 6, 38911 (2016)

K. Dewhurst, P. Elliott, S. Shallcross, E.K.U. Gross, S. Sharma,

Nano Lett. 18, 1842 (2018)
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Global moment |M(t)| nearly preserved

Local moments around each atom change 
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Mn3Ga  (ferri-magnet)

TDDFT prediction for Mn3Ga: ferri→ ferro transition within 4 fs



Ga

Mn

Mn3Ga  (ferri-magnet)

TDDFT prediction for Mn3Ga: ferri→ ferro transition within 4 fs

OISTR experimentally confirmed! (Aeschlimann group, 2018) 



Future aspects in the field of laser-driven spin dynamics: 
• Include relaxation processes due to el-el scattering 

- in principle contained in TDDFT, 

- but not with adiabatic xc functionals

- need xc functional approximations with memory 

• Include relaxation processes due to el-phonon scattering

• Include relaxation due to radiative effects

simultaneous propagation of TDKS and Maxwell equations

• Include dipole-dipole interaction to describe motion of domains 

construct approximate xc functionals which refer to the dipole int

• Optimal-control theory to find optimized laser pulses 

to selectively demagnetize/remagnetize, i.e. to switch,

the magnetic moment

• Create Skyrmions with suitably shaped laser pulses
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Optimal control using short laser pulses

Review Article on Quantum Optimal Control Theory: 

J. Werschnik, E.K.U. Gross, J. Phys. B 40, R175-R211 (2007)



Normal question:

What happens if a system is exposed to a given laser pulse?

Inverse question (solved by OCT):

Which is the laser pulse that achieves a prescribed goal (target)?

Optimal Control Theory (OCT) 

possible targets: a) system should end up in a given final state ff

at the end of the pulse

b) wave function should  follow a given trajectory in 

Hilbert space

c) density should  follow a given classical trajectory r(t)



Optimal control of static targets

(standard formulation)
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Optimal control of static targets

(standard formulation)
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For given target state Φf  , maximize the functional: 

GOAL:  Maximize  J = J1 +  J2 +  J3



Control equations                         

1. Schrödinger equation with initial condition:

2. Schrödinger equation with final condition:

3. Field equation:
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Set the total variation of  J = J1 + J2 + J3 equal to zero:



Control equations                         

1. Schrödinger equation with initial condition:

2. Schrödinger equation with final condition:

3. Field equation:
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i t H t t T O Tc c c y¶ = =

1
ˆ( ) Im ( ) ( )t t te c µ y

a
=

0Jcd = ®

0Jyd = ®

0J
e
d = ®

Set the total variation of  J = J1 + J2 + J3 equal to zero:

Algorithm

Forward propagation

Backward propagation

New laser field

Algorithm monotonically convergent: W. Zhu, J. Botina, H. Rabitz, JCP 108, 1953 (1998))



Quantum ring: Control of circular current

TDSE:

30 nm

1

1.04

1.12

1.24



Control of currents

|y(t)|

l = -1 l = 1

l = 0

|y(t)|2
j (t)j and

I ~ µA

E. Räsänen, A. Castro, J. Werschnik, A. Rubio, E.K.U.G., PRL 98, 157404 (2007)



OPTIMAL CONTROL OF 

TIME-DEPENDENT TARGETS

Maximize
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Control equations                         

1. Schrödinger equation with initial condition:

2. Schrödinger equation with final condition:

3. Field equation:

ˆ( ) ( ) ( ), (0)
t

i t H t ty y y f¶ = =

1
ˆ( ) Im ( ) ( )t t te c µ y

a
=
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Set the total variation of  J = J1 + J2 + J3 equal to zero:

Algorithm

Forward propagation

Backward propagation

New laser field

Inhomogenous TDSE :
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Algorithm monotonically convergent:

I. Serban, J. Werschnik, E.K.U.Gross., Phys. Rev. A 71, 053810 (2005)



Control path in real space
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with given trajectory   r0(t) .

Algorithm maximizes the density along the path r0(t):

I. Serban, J. Werschnik, E.K.U.G. Phys. Rev. A 71, 053810 (2005)



Trajectory 2Trajectory 1

Control of charge transfer along selected pathways



Time-evolution of wavepacket with the optimal laser pulse for trajectory 1



Lowest six eigenstates



Populations of eigenstates

ground state

first excited state

second excited state

fifth excited state



Trajectory 2



• Formally the same OCT equations

• Problem: For more than 6 degrees of freedom, the full 

solution of the TDSE becomes computationally too hard 

Control of many-body systems
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Control of many-body systems

Instead of solving the many-body TDSE, 

combine OCT with TDDFT
A. Castro, J. Werschnik, E.K.U. Gross, PRL 109, 153603 (2012) 



• Formally the same OCT equations

• Problem: For more than 6 degrees of freedom, the full 

solution of the TDSE becomes computationally too hard 

Control of many-body systems

Instead of solving the many-body TDSE, 

combine OCT with TDDFT
A. Castro, J. Werschnik, E.K.U. Gross, PRL 109, 153603 (2012) 

Important: Control target must be formulated in terms of

the density!



Optimal Control of Harmonic Generation 

(example: Helium Atom)
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Enhancement of a single harmonic peak

Harmonic Spectrum:

( ) ( )

2
2

i t 3

2

d
H rdte d r

dt
, t

w ï
r

ì üï
w = í ý

ï ïî þ
ò ò

!
z

Maximize:

To maximize, e.g., the 7th harmonic of ω0 , choose coefficients as

α7= 4, α3 = α5 = α9 = α11 = -1
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Measure of enhancement: Compare with reference pulse:



Harmonic spectrum  of reference pulse for hydrogen atom



Results for Hydrogen atom

A. Castro, A. Rubio, E.K.U.Gross,

Eur. Phys. J. B 88, 191 (2015).



Results for Helium atom

(Using TDDFT with EXX functional)

A. Castro, A. Rubio, E.K.U.Gross,

Eur. Phys. J. B 88, 191 (2015).
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