Plan

- Introduction to what is memory in TDDFT
- Approximations including memory, and some exact conditions
- Some examples (including charge-transfer dynamics)
- Memory in linear response: double-excitations (after a short detour about asymptotics of v_{xc})

First, quick recall of how we get excitations in TDDFT: Linear response

Petersilka, Gossmann & Gross, PRL 76, 1212 (1996)

Casida, in Recent Advances in Comput. Chem. 1,155, ed. Chong (1995)

$$\chi(\mathbf{r},\mathbf{r}';\omega) = \sum_{I} \left\{ \frac{1}{\omega - \omega_{I} + i0^{+}} - \frac{1}{\omega + \omega_{I} + i0^{+}} \right\} F_{I}(\mathbf{r}) = \langle \Psi_{0} | \hat{n}(\mathbf{r}) | \Psi_{I} \rangle$$

TDDFT linear response in quantum chemistry codes:

$$\widetilde{\Omega}(\omega)_{qq'} = \delta_{qq'} \omega_q^2 + 4 \sqrt{\omega_q \omega_{q'}} [q|f_{\text{HXC}}(\omega)|q']$$

 $q = (i \rightarrow a)$ labels a single excitation of the KS system, with transition frequency $\omega_q = \varepsilon_a - \varepsilon_i$, and

$$[q|f_{\text{HXC}}(\boldsymbol{\omega})|q'] = \int d\mathbf{r} d\mathbf{r}' \,\phi_i^*(\mathbf{r}) \,\phi_a(\mathbf{r}) f_{\text{HXC}}(\mathbf{r},\mathbf{r}',\boldsymbol{\omega}) \,\phi_{i'}(\mathbf{r}') \,\phi_{a'}^*(\mathbf{r}')$$

Eigenvalues \rightarrow true frequencies of interacting system

Eigenvectors \rightarrow oscillator strengths

Useful tool for analysis

Zoom in on a single KS excitation, $q = i \rightarrow a$

Well-separated single excitations: SMA $\omega^2 = \omega_q^2 + 4\omega_q[q|f_{\rm HXC}(\omega_q)|q]$ When shift from bare KS small: SPA $\omega = \omega_q + 2[q|f_{\rm HXC}(\omega_q)|q]$ Where the usual approxs give poor excitations

i.e. the usual xc approxs that are semi-local in space and local in time

Rydberg states

Asymptotic behavior of the xc potential :

Question for you! What is $v_{xc}(r \rightarrow \infty)$ for an atom ?

Far from nucleus of charge Z, electron sees an effective charge of Z - (N-1) So, $v_s(r \to \infty) \to \frac{-Z + (N-1)}{r}$ while $v_{ext}(r) \to \frac{-Z}{r}$ and $v_H(r \to \infty) \to \frac{N}{r}$ hence $v_{xc}(r \to \infty) = vs - vext - vH \to \frac{-1}{r}$ (true for any finite system)

Another Question for you: What about LDA? Or GGA?

Since $v_{xc}(r)$ depends locally on the density, and the density decays exponentially, then $v_{xc}(r)$ decays exponentially with r

This has some grave consequences!

Asymptotic behavior of the xc potential :

Without -1/r tail, there's no Rydberg series.

Moreover, while exact: $\varepsilon_{H} = -I$ (Koopman's thm)

but LDA's wrong decay pushes up the HOMO \rightarrow LDA $\varepsilon_{\rm H}$ underestimates -I

This is *one* aspect that leads to underestimate of charge-transfer excitations.

(Other problematic aspects: fxc correction vanishes due to vanishing orbital overlap, so cannot shift ε_L from being a neutral excitation to an affinity level, and cannot produce any electrostatic -1/R behavior. Using hybrids within generalized KS, ε_L acquires affinity character itself, making fxc's job easier).

Where the usual approxs give poor excitations

i.e. the usual xc approxs that are semi-local in space and local in time

• GS potential decays ~ $e^{-2\sqrt{2I}r}$ instead of -1/r at large r

Rydberg states

Asymptotically corrected ("cut & splice") functionals, (e.g. LB94, HCTH(AC)), EXX, or range-separated hybrids (eg CAM-B3LYP)...
 e.g. Tozer & Handy Phys. Chem. Chem. Phys. 2, 2117, (2000)

Polarizabilities of long-chain molecules

 GS fnal needs non-local densitydependence

✓ EXX, SIC-LDA, TD current-DFT

e.g. van Gisbergen et al. PRL **83**, 694 (1999), van Faassen et al. PRL **88**, 186401 (2002).

Primary problem above is the ground-state xc potential....what about cases where the problem is the f_{xc} ? We have...

Where the usual approxs give poor excitations

i.e. the usual xc approxs that are semi-local in space and local in time

• GS potential decays ~ $e^{-2\sqrt{2I}r}$ instead of -1/r at large r

Rydberg states

Asymptotically corrected ("cut & splice") functionals, (e.g. LB94, HCTH(AC)), EXX, or range-separated hybrids (eg CAM-B3LYP)...
 e.g. Tozer & Handy Phys. Chem. Chem. Phys. 2, 2117, (2000)

Polarizabilities of long-chain molecules

 GS fnal needs non-local densitydependence

✓ EXX, SIC-LDA, TD current-DFT

e.g. van Gisbergen et al. PRL **83**, 694 (1999), van Faassen et al. PRL **88**, 186401 (2002).

- Primary problem above is the ground-state xc potential....what about cases where the problem is the f_{xc} ? We have...
 - Optical response of solidsNeed "ultra-long-ranged" kernel ~ 1/q² to reveal
excitons and to open the gap.e.g. G. Onida, L. Reining, A. Rubio, Rev. Mod. Phys. 74, 601 (2002)
S. Botti, A. Schindlmayr, R. D. Sole, and L. Reining, Rep. Prog. Phys. 70, 357 (2007)

Where the usual approxs give poor excitations, cont.

Long-range charge transfer

Conical intersections

- Exponentially-small overlap between donor and acceptor orbitals → fxc correction vanishes
- ✓ Range-separated hybrids in GKS, and other approaches, for *some* cases.

Review in, Maitra, J. Phys. Condens. Matt. 29, 423001 (2017)

- Adiabatic approx for fxc fails.
- ✓ Frequency-dependent kernel developed → "dressed TDDFT"

Maitra, Zhang, Cave, Burke, J. Chem. Phys. 120, 5932 (2004)

Both the GS fnal is poor due to near-degeneracy
 static correlation – and adiabatic fxc fails.

Levine et al. Mol. Phys. **104**, 1039 (2006); Tapavicza et al, J. Chem. Phys. **129**., 124108 (2008)

Derivative Couplings
Needed in coupled electron-ion dynamics using surface-hopping – excited-to-excited non-adiabatic couplings are not accessible in linear resp, but adiabatic quadratic response gives divergences.
Ou, Bellchambers, Furche, Subotnik, J. Chem. Phys. 142, 064114 (2015); Li, Liu, JCP 141, 244105 (2014); Zhang, Herbert JCP 142, 064109 (2015)

Types of Excitations

Non-interacting systems eg. 4-electron atom

Interacting systems: generally involve combinations of (KS) determinants that may have 1,2,3...electrons in excited orbitals.

Double (Or Multiple) Excitations

How do these different types of excitations appear in the TDDFT response functions?

Consider:

$$\chi(\mathbf{r},\mathbf{r}';\omega) = \sum_{I} \left\{ \frac{F_{I}(\mathbf{r})F_{I}^{*}(\mathbf{r}')}{\omega - \omega_{I} + i0^{+}} - \frac{F_{I}^{*}(\mathbf{r})F_{I}(\mathbf{r}')}{\omega + \omega_{I} + i0^{+}} \right\} F_{I}(\mathbf{r}) = \langle \Psi_{0}|\hat{n}(\mathbf{r})|\Psi_{I}\rangle$$

 χ – poles at true states that are mixtures of singles, doubles, and higher excitations

 χ_s -- poles at single KS excitations only, since one-body operator $\hat{n}(\mathbf{r})$ can't connect Slater determinants differing by more than one orbital.

 $\Rightarrow \chi$ has more poles than χ_s

? How does f_{xc} generate more poles to get states of multiple excitation character?

Simplest Model:

Exactly solve one KS single (q) mixing with a nearby double (D) KS Exact

$$\frac{1-\mathbf{n}^{2} \cdot \mathbf{m}^{2}}{\mathbf{q}} \omega_{\mathbf{q}} \qquad \frac{\mathbf{1}-\mathbf{n}^{2} \cdot \mathbf{m}^{2}}{\mathbf{m}^{2} \cdot \mathbf{1}-\mathbf{m}^{2}} \omega_{\mathbf{q}} \qquad \Psi_{a} = m \Phi_{D} + \sqrt{1-m^{2}} \Phi_{q}, \qquad \Psi_{b} = \sqrt{1-m^{2}} \Phi_{D} - m \Phi_{q}, \quad 0 < m < 1$$

$$\psi_{b} = \sqrt{1-m^{2}} \Phi_{D} - m \Phi_{q}, \quad 0 < m < 1$$

$$\chi_{s}(\mathbf{r}, \mathbf{r}', \omega) \approx \frac{A(\mathbf{r}, \mathbf{r}', (\omega))}{\omega - \omega_{q}} \qquad \chi(\mathbf{r}, \mathbf{r}'; \omega) \approx A(\mathbf{r}, \mathbf{r}'; \omega) \left(\frac{1-m^{2}}{\omega - \omega_{a}} + \frac{m^{2}}{\omega - \omega_{b}}\right)$$

Invert and insert into Dyson-like eqn for kernel \rightarrow dressed SPA (i.e. ω -dependent):

$$2[q|f_{H\times c}(\omega)|q] = 2\left([q|\chi_{s}^{-1}|q] - [q|\chi^{-1}|q]\right)$$
$$= (\bar{\omega} - \omega_{q}) + \frac{\bar{\omega}'\bar{\omega} - \omega_{a}\omega_{b}}{(\omega - \bar{\omega}')}$$
$$strong non-adiabaticity!$$

$$\bar{\omega} = (1 - m^2)\omega_a + m^2\omega_b$$
$$\bar{\omega}' = m^2\omega_a + (1 - m^2)\omega_b$$

This kernel matrix element, by construction, yields the <u>exact</u> true ω 's when used in the Dressed SPA,

$$\omega = \omega_q + 2[q|f_{\text{HXC}}(\omega)|q]$$

 $\chi^{-1} = \chi_{\rm s}^{-1} - f_{\rm Hxc}$

$$2[q|f_{H\times c}(\omega)|q] = 2\left([q|\chi_{s}^{-1}|q] - [q|\chi^{-1}|q]\right)$$
$$= (\bar{\omega} - \omega_{q}) + \frac{\bar{\omega}'\bar{\omega} - \omega_{a}\omega_{b}}{(\omega - \bar{\omega}')}$$

Practical Approximation for the Dressed Kernel

Diagonalize many-body H in KS subspace near the double-ex of interest, and require reduction to adiabatic TDDFT in the limit of weak coupling of the single to the double:

dynamical (non-adiabatic) correction

- So: (i) scan KS orbital energies to see if a double lies near a single,
- (ii) apply this kernel just to that pair
- (iii) apply usual ATDDFT to all other excitations

N.T. Maitra, F. Zhang, R. Cave, & K. Burke JCP **120**, 5932 (2004)

Alternate Derivations

> M.E. Casida, JCP **122**, 054111 (2005)

M. Huix-Rotllant & M.E. Casida, in *Density-Functional Methods for Excited States*, ed. N. Ferre, M. Filatov, and M. Huix- Rotllant (Springer 2016)

-- from second-order polarization propagator (SOPPA) correction to ATDDFT

P. Romaniello, D. Sangalli, J. A. Berger, F. Sottile, L. G. Molinari, L. Reining, and
 G. Onida, JCP 130, 044108 (2009)

-- from Bethe-Salpeter equation with dynamically screened interaction $W(\omega)$

> O. Gritsenko & E.J. Baerends, PCCP **11**, 4640, (2009).

-- use CEDA (Common Energy Denominator Approximation) to account for the effect of the other states on the inverse kernels, and obtain spatial dependence of $f_{\rm xc}$ -kernel as well.

Example: short-chain polyenes

Lowest-lying excitations notoriously difficult to calculate due to significant doubleexcitation character. E.g. Butadiene, dark $2^{1}A_{a}$ state

 $\bullet~2^1A_g$ Vertical excitation energies (eV) for but adiene and hexatriene

System	CASPT2	ATDDFT	D-TD-TDDFT
C_4H_6	6.27	7.02 ?	6.28
C_6H_8	5.20	^{5.83} ?	5.16

 $\bullet~2^1A_g$ Vertical and 0-0 excitations for but adiene at the estimated planar stationary point for 2^1A_g

ΔE	CASPT2	ATDDFT	D-TD-TDDFT
Vertical	4.3	5.8	4.16
0-0	5.2	6.8	5.28

R. Cave, F. Zhang, N.T. Maitra, K. Burke, CPL 389, 39 (2004);

More implementations and tests:

G. Mazur, R. Wlodarczyk, J. Comp. Chem. **30**, 811, (2008); Mazur, G., M. Makowski, R. Wlodarcyk, Y. Aoki, IJQC **111**, 819 (2010);

M. Huix-Rotllant, A. Ipatov, A. Rubio, M. E. Casida, Chem. Phys. **391**, 120 (2011) – extensive testing on 28 organic molecules.

So that's a bit about memory in TDDFT

Ask me questions!

And, to find out more:

Recent reviews:

• N. T. Maitra, *Perspective* in J. Chem. Phys. **144**, 220901 (2016).

• M. R. Provorse and C. M. Isborn, Int. J. Quant. Chem. **116**, 739 (2016).

• C. A. Ullrich and Zeng-hui Yang, Brazilian J. of Phys. **44**, 154 (2014).

• TDDFT: Concepts and Applications, by Carsten Ullrich (Oxford University Press 2012) Fundamentals of TDDFT (Springer, 2012)
 Ch.4, "Introduction to TDDFT" and Ch. 8 on Memory, both available from my website.

Thanks so much for your attention!!!