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MANTRA OF CORRELATED-WAVEFUNCTION
THEORY:

THE RIGHT ANSWER FOR THE RIGHT REASON
(BUT AT A HIGH PRICE, AND ONLY FOR FEW-
ELECTRON SYSTEMS.)

MANTRA OF DENSITY FUNCTIONAL THEORY:

ALMOST THE RIGHT ANSWER FOR ALMOST THE
RIGHT REASON AT ALMOST THE RIGHT PRICE
FOR ALMOST ALL SYSTEMS OF INTEREST.

THE HISTORY OF DFT SHOWS THE POWER OF AN
EXISTENCE THEOREM.
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OUTLINE

CONNECTION BETWEEN GROUND-STATE DFT
AND TIME-DEPENDENT DFT

MOTIVATION FOR GS-DFT

BRIEF HISTORY AND CURRENT STATE OF GS-
DFT

TIME FOR YOUR QUESTIONS AND COMMENTS

SOME FUNDAMENTAL THEOREMS AND
PROOFS OF GS-DFT (HANDWRITTEN APS
TUTORIAL)

TIME FOR YOUR QUESTIONS AND COMMENTS
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CONNECTION BETWEEN GROUND-STATE DFT AND
TIME-DEPENDENT DFT

TD-DFT DESCRIBES HOW THE DENSITY OF A
MANY-ELECTRON SYSTEM, SUBJECT TO A
POSSIBLY TIME-DEPENDENT SCALAR
MUTIPLICATVE EXTERNAL POTENTIAL, EVOLVES
IN TIME FROM AN INITIAL WAVEFUNCTION (AND
THEREFORE THE POSSIBLE EXCITATION
ENERGIES OF THE SYSTEM). GS-DFT IS THE
STATIC OR SLOWLY-VARYING-IN-TIME LIMIT OF
TD-DFT WHEN THE INITIAL STATE IS THE
GROUND-STATE, AND PROVIDES OR GUIDES THE
APPROXIMATIONS OF TD-DFT. (BUT TD-DFT IS
MUCH HARDER TO DEVELOP THAN GS-DFT.)
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MOTIVATION FOR GROUND-STATE DFT

MATERIALS INCLUDE NOT ONLY FREE ATOMS
AND ATOMIC IONS BUT ALSO COLLECTIONS
OF ATOMS BONDED TOGETHER: MOLECULES,
NANOSTRUCTURES, LIQUIDS, GELS, AND
SOLIDS.

A MATERIAL CAN BE DEFINED BY ITS
COMPOSITION (HOW MANY ATOMS OF EACH
KIND) AND STRUCTURE (WHERE THE ATOMS
ARE RELATIVE TO ONE ANOTHER).
STRUCTURE IS DETERMINED BY COVALENT,
IONIC, METALLIC, HYDROGEN, OR VAN DER
WAALS BONDS BETWEEN THE ATOMS.

8/5/19 5



MATERIALS DISPLAY MANY SURPRISING OR
EMERGENT PROPERTIES, AND ALSO MANY
USEFUL ONES. LIFE AND SUPER-
CONDUCTIVITY ARE TWO EXAMPLES.

CHEMISTS AND CONDENSED MATTER
PHYSICISTS WANT TO UNDERSTAND
MATERIALS. MATERIALS SCIENTISTS WANT
TO DESIGN USEFUL NEW MATERIALS.

EXPERIMENT KEEPS US GROUNDED IN
REALITY, BUT IT IS TOO SLOW AND
EXPENSIVE TO EXPLORE THE IMMENSE
SPACE OF POSSIBLE MATERALS.
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MODELS WITH PARAMETERS FITTED TO
EXPERIMENT CAN HELP US UNDERSTAND
MATERIAL PROPERTIES, BUT THEY CANNOT
PREDICT WHAT MATERIALS CAN EXIST AND
WITH WHAT PROPERTIES.

THE ONLY PREDICTIVE AND MATERIALS-
SPECIFIC THEORY IS THE QUANTUM
MECHANICS OF MANY INTERACTING
ELECTRONS. BUT STANDARD QUANTUM
MECHANICS IS ALSO TOO SLOW FOR ALL
BUT THE SMALLEST SYSTEMS.
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THE MOST WIDELY-USED THEORY OF
MATERIALS, AND THUS THE MOST-CITED AREA
OF PHYSICS OR CHEMISTRY, IS DENSITY
FUNCTIONAL THEORY (DFT), WHICH STARTS
FROM STANDARD QUANTUM MECHANICS, THEN
SHOWS THAT IN PRINCIPLE THE EXACT
GROUND-STATE ENERGY AND ELECTRON
DENSITY CAN BE PREDICTED FROM A
FUNCTIONAL OF ELECTRON DENSITY. DFT FINDS
COMPUTATIONALLY EFFICIENT
APPROXIMATIONS TO THAT FUNCTIONAL, WITH
A USEFUL ACCURACY THAT IMPROVES OVER
TIME. DFT INTRODUCES AN AUXILIARY SYSTEM
OF NON-INTERACTING ELECTRONS THAT OBEY
SELFCONSISTENT ONE-ELECTRON
SCHROEDINGER EQUATIONS.

8/5/19



AT ORDINARY TEMPERATURES, THE
ELECTRONS OF A MATERIAL ARE OFTEN IN
OR CLOSE TO THEIR GROUND STATE, EVEN
WHEN THE MORE MASSIVE NUCLEI OR NOT.
FOR EXAMPLE, LIQUIDS ARE OFTEN
COMPUTED BY AB INITIO MOLECULAR
DYNAMICS, WHCH DESCRIBES THE
CLASSICAL MOTION OF THE NUCLEI BUT
COMPUTES THE FORCES ON THE NUCLEI AS
GRADIENTS OF THE GROUND-STATE TOTAL
ENERGY OF THE ELECTRONS, FROM GS-DFT.
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BRIEF AND PARTIAL HISTORY OF GS-DFT

1926 SCHROEDINGER EQUATION FOR THE
WAVEFUNCTION

1927 THOMAS-FERMI APPROXIMATION FOR
THE GS DENSITY AND ENERGY, WITHOUT A
WAVEFUNCTION

1928 HARTREE APPROXIMATION FOR

SELFCONSISTENT ONE-ELECTRON
WAVEFUNCTIONS

1930 HARTREE-FOCK MEAN-FIELD
APPROXIMATION

1930 DIRAC LOCAL DENSITY APPROXIMATION
FOR THE EXCHANGE ENERGY
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1951 SLATER’s X-ALPHA METHOD AS A DENSITY
FUNCTIONAL APPROXIMATION TO HARTREE-FOCK

1964 HOHENBERG-KOHN THEOREM: AN EXACT-IN-
PRINCIPLE GS-DFT

1965 KOHN-SHAM THEOREM: EXACT-IN-PRINCIPLE
ONE-ELECTRON EQUATIONS. THE LOCAL DENSITY
APPROXIMATION FOR THE EXCHANGE-
CORRELATION ENERGY, AN INTEGRAL OVER 3D
SPACE OF A FUNCTION OF THE LOCAL ELECTRON
DENSITY, CONSTRUCTED TO BE EXACT FOR A
DENSITY THAT IS UNIFORM OR SLOWLY-VARYING-IN-
SPACE.

1965-1972: LITTLE INTEREST, AND LITTLE
EXPECTATION (EVEN FROM KOHN) THAT THE LOCAL
DENSITY APPROXIMATION COULD BE USEFULLY
ACCURATE. PHYSICISTS PREFERRED THE HARTREE
APPROACH, AND CHEMISTS THE HARTREE-FOCK
APPROACH.
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1972 VON BARTH-HEDIN SPIN-DENSITY
FUNCTIONAL THEORY

~1972 CONDENSED MATTER PHYSICISTS
DISCOVER THAT MAKING A LOCAL SPIN DENSITY
APPROXIMATION (LSDA) TO THE EXCHANGE-
CORRELATION ENERGY IS VASTLY MORE
ACCURATE THAN IGNORING THIS ENERGY (AS IN
THE HARTREE APPROX.). THE XC ENERGY IS
“NATURE”S GLUE”, BONDING ONE ATOM TO
ANOTHER.

1975-1976 LANGRETH AND PERDEW, ALSO
GUNNARSSON AND LUNDQVIST, DERIVE THE
EXACT ADIABATIC CONNECTION EXPRESSION
FOR EXCHANGE-CORRELATION ENERGY,
EXPLAINING WHY LSDA WORKS.
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1979 LEVY DERIVES THE EXACT
CONSTRAINED-SEARCH EXPRESSION FOR
THE EXCHANGE-CORRELATION ENERGY

1981 PERDEW AND ZUNGER DESIGN A SELF-
INTERACTION CORRECTION TO DENSITY
FUNCTIONAL APPROXIMATIONS

1982 PERDEW, PARR, LEVY, AND BALDUZ
DERIVE DFT FOR OPEN SYSTEMS WITH NON-
INTEGER AVERAGE ELECTRON NUMBER

1984 RUNGE AND GROSS DERIVE TIME-
DEPENDENT DFT
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1980’s LEVY, LIEB, AND OTHERS DERIVE MANY EXACT
MATHEMATICAL PROPERTIES OF THE EXACT DENSITY
FUNCTIONALS FOR THE EXCHANGE AND CORRELATION
ENERGIES

1980’s AND 1990°s LANGRETH AND MEHL, PERDEW
AND WANG, BECKE, YANG, PARR, BURKE, AND
ERNZERHOF DEVELOP GENERALIZED GRADIENT
APPROXIMATIONS (GGA’s) TO THE XC ENERGY, AN
INTEGRAL OVER 3D SPACE OF A FUNCTION OF THE
LOCAL ELECTRON DENSITY AND ITS GRADIENT.

1993 BECKE PROPOSES HYBRID FUNCTIONALS THAT
MIX A FRACTION OF EXACT EXCHANGE WITH GGA’s

1990’s DFT, ENDORSED BY JOHN POPLE, BECOMES
POPULAR IN CHEMISTRY
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1998 KOHN AND POPLE SHARE THE NOBEL PRIZE
IN CHEMISTRY FOR DFT

2000’s DFT BECOMES POPULAR IN MATERIALS
SCIENCE

2008 YANG, MORI-SANCHEZ, AND COHEN
DERIVE DFT FOR FRACTIONAL SPIN

2015 SUN, RUZSINSZKY, AND PERDEW

CONSTRUCT THE SCAN (STRONGLY
CONSTRAINED AND APPROPRIATELY NORMED)

META-GGA
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A GGA CONSTRUCTS THE XC ENERGY DENSITY
FROM THE LOCAL ELECTRON DENSITY AND ITS
GRADIENT. A META-GGA EMPLOYS ALSO THE
KINETIC ENERGY DENSITY OF THE KOHN-SHAM
ORBITALS.

SCAN WAS CONSTRUCTED TO SATISFY ALL 17
EXACT CONSTRAINTS (MATHEMATICAL
PROPERTIES OF THE EXACT FUNCTIONAL) THAT A
META-GGA CAN SATISFY.

2015- SCAN FOUND TO BE TYPICALLY MUCH
MORE ACCURATE THAN GGA’s OR OTHER META-
GGA’s.
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THE MATERIALS PROJECT AT BERKELEY IS
AN ON-LINE DATABASE OF THE COMPUTED
PROPERTIES OF ABOUT 60,000 SOLIDS, USING
THE PBE GGA OF DFT. OVER THE COURSE OF
MORE THAN AYEAR, IT IS BEING SWITCHED
TO THE SCAN META-GGA.
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SCAN OFTEN PREDICTS THE SMALL ENERGY
DIFFERENCES BETWEEN DIFFERENT PHASES OF
COMPLEX MATERIALS (E.G., WATER) AND
STRONGLY-CORRELATED MATERIALS (E.G., THE
POLYMORPHS OF MnO2, THE BAND GAPS AND
STRIPES IN CUPRATE HIGH-TEMPERATURE
SUPERCONDUCTOR MATERIALS).

DFT IS NOT JUST A ONE-ELECTRON, MEAN-FIELD,
OR WEAK-CORRELATION THEORY.

BETTER APPROXIMATIONS ARE LEADING TO
FIRST-PRINCIPLES PREDICTIONS FOR
INTERESTING AND CHALLENGING MATERIALS.
BUT THERE IS STILL MUCH ROOM FOR FURTHER
IMPROVEMENT.
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