TDDFT for extended systems II: Excitons

Carsten A. Ullrich University of Missouri

Rutgers University, August 9, 2019

Outline

- Introduction to excitons
- TDDFT for periodic systems
- Optical spectra and exciton binding energies
- xc functionals for excitons
- TDDFT vs. BSE: derivation of Wannier equation

Absorption of light in a solid

Let us consider the absorption of light in a solid with a gap.

Absorption of light across the band gap

- Light comes in with photon energy at least as large as the band gap
- Photon gets absorbed, promotes electron across the gap, leaving a hole behind

will produce an absorption spectrum like this:

Absorption spectra of insulators/semiconductors

ZnO
P. Gori et al., Phys. Rev. B 81, 125207 (2010)

GaAs

R.G. Ulbrich, Adv. Solid State Phys. 25, 299 (1985)

In the experiment, one finds sharp peaks at the absorption threshold... In fact, there are peaks below the band gap energy: Excitons.

What is an exciton?

- After their creation, the electron and the hole are not completely free, but experience Coulomb attraction.
- This gain in electrostatic energy can lower the onset of absorption, and change the spectral strength.

Excitons are bound electron-hole pairs.

Elementary view of Excitons

Mott-Wannier exciton: weakly bound, delocalized over many lattice constants

- In semiconductors with small band gap and large ε

Frenkel exciton:

 tightly bound, localized on a single (or a few) atoms- In large-gap insulators, or in low- ε organic materials

Excitonic features in the absorption spectrum

- Sharp peaks below the onset of the single-particle gap
- Redistribution of oscillator strength: enhanced absorption close to the onset of the continuum

바 Wannier equation and excitonic Rydberg Series

$$
\left(-\frac{\hbar^{2} \nabla_{r}^{2}}{2 m_{r}}-\frac{e^{2}}{\varepsilon r}\right) \varphi(\mathbf{r})=E \varphi(\mathbf{r})
$$

- $\varphi(\mathbf{r})$ is exciton wave function
- includes dielectric screening
- derived from Bethe-Salpeter eq.

Sham and Rice, Phys. Rev. 144, 708 (1966)
$\mathrm{Cu}_{2} \mathrm{O}$

R.J. Uihlein, D. Frohlich, and R. Kenklies, PRB 23, 2731 (1981)

GaAs

R.G. Ulbrich, Adv. Solid State Phys. 25, 299 (1985)
G. D. Scholes and G. Rumbles, Nature Mater. 5, 683 (2006) Jang \& Mennucci, Rev. Mod. Phys. 90, 035003 (2018)

Emission wavelength (nm)

Frenkel excitons in light-harvesting systems: purple bacteria

Optical transitions in insulators are challenging for TDDFT:

- band gap opening
- excitons

Insulators: three different gaps

> | The Kohn-Sham gap |
| :--- |
| approximates the optical |
| gap (neutral excitation), |
| not the band gap! |

Band gap: $\quad E_{g}=E_{g, K S}+\Delta_{x c}$
Optical gap: $E_{g}^{\text {optical }}=E_{g}-E_{0}^{\text {exciton }}$

Matsushita, Nakamura and Oshiyama, PRB 84, 075205 (2011)
see also Skone, Govoni and Galli, PRB 93, 235106 (2016)
L. J. Sham and T. M. Rice, Phys. Rev. 144, 708 (1966)
M. Rohlfing and S. Louie, PRB 62, 4927 (2000)
G. Onida, L. Reining, R. Rubio, RMP 74, 601 (2002)
S. Sharifzadeh, J. Phys.: Cond. Mat. 30, 153002 (2018)

Many-body perturbation theory: Based on Green's functions

- moves (quasi)particles around
- one-particle G: electron addition and removal - GW ground state
- two-particle L: electron-hole excitation - Bethe-Salpeter equation
- intuitive: contains the right physics (screened e-h interaction) by direct construction

Time-dependent DFT: Based on the electron density

- moves the density around
- Ground state: Kohn-Sham DFT
- response function χ : neutral excitations of the KS system
- efficient (all interactions are local), but less intuitive how the right physics is built in
* Matteo Gatti, TDDFT School 2010, Benasque

1. Calculate the dielectric function via Dyson equation (computationally more efficient, gives optical spectrum)
2. Solve Casida equation
(more expensive, gives precise exciton binding energies)
3. Real-time TDDFT (potentially even more efficient)
C.A. Ullrich and Z.-H. Yang, Topics in Current Chem. 368 (2015) Y.-M. Byun and C.A. Ullrich, Phys. Rev. B 95, 205136 (2017)
T. Sander and G. Kresse, JCP 146, 064110 (2017)

TDDFT Linear response in periodic systems

$$
\begin{aligned}
\chi\left(\mathbf{r}, \mathbf{r}^{\prime}, \omega\right) & =\chi_{s}\left(\mathbf{r}, \mathbf{r}^{\prime}, \omega\right)+\int d^{3} x \int d^{3} x^{\prime} \chi_{s}(\mathbf{r}, \mathbf{x}, \omega) \\
& \times\left\{\frac{1}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|}+f_{x c}\left(\mathbf{x}, \mathbf{x}^{\prime}, \omega\right)\right\} \chi\left(\mathbf{x}^{\prime}, \mathbf{r}^{\prime}, \omega\right)
\end{aligned}
$$

Periodic systems: $\quad \chi\left(\mathbf{r}, \mathbf{r}^{\prime}, \omega\right)=\chi\left(\mathbf{r}+\mathbf{R}, \mathbf{r}^{\prime}+\mathbf{R}, \omega\right)$
Fourier transform:

$$
\chi\left(\mathbf{r}, \mathbf{r}^{\prime}, \omega\right)=\sum_{\mathbf{q} \in B Z} \sum_{\mathbf{G}, \mathbf{G}^{\prime}} e^{-i(\mathbf{q}+\mathbf{G}) \cdot \mathbf{r}} e^{i\left(\mathbf{q}+\mathbf{G}^{\prime}\right) \cdot \mathbf{r}^{\prime}} \chi\left(\mathbf{q}+\mathbf{G}, \mathbf{q}+\mathbf{G}^{\prime}, \omega\right)
$$

$$
\begin{aligned}
\chi_{\mathbf{G G}^{\prime}}(\mathbf{q}, \omega) & =\chi_{s \mathbf{G} \mathbf{G}^{\prime}}(\mathbf{q}, \omega)+\sum_{\mathbf{G}_{1} \mathbf{G}_{2}} \chi_{s \mathbf{G G}_{1}}(\mathbf{q}, \omega) \\
& \times\left\{V_{\mathbf{G}_{1}}(\mathbf{q}) \delta_{\mathbf{G}_{1} \mathbf{G}_{2}}+f_{x c \mathbf{G}_{1} \mathbf{G}_{2}}(\mathbf{q}, \omega)\right\} \chi_{\mathbf{G}_{2} \mathbf{G}^{\prime}}(\mathbf{q}, \omega)
\end{aligned}
$$

The dielectric tensor

$$
\begin{array}{ll|l}
\nabla \cdot \mathbf{D}=n_{\text {free }} & \nabla \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t} & \begin{array}{l}
\text { Maxwell } \\
\text { equations }
\end{array} \\
\nabla \cdot \mathbf{B}=0 & \nabla \times \mathbf{H}=\mathbf{j}_{\text {free }}+\frac{\partial \mathbf{D}}{\partial t} &
\end{array}
$$

Def. of dielectric tensor:

$$
\mathbf{D}(\mathbf{r}, \omega)=\int d^{3} r^{\prime} \underline{\underline{\varepsilon}}\left(\mathbf{r}, \mathbf{r}^{\prime}, \omega\right) \mathbf{E}\left(\mathbf{r}^{\prime}, \omega\right)
$$

In periodic solids:

$$
\mathbf{D}_{\mathbf{G}}(\mathbf{q}, \omega)=\sum_{\mathbf{G}^{\prime}} \underline{\underline{\varepsilon}}_{\mathbf{G G}^{\prime}}(\mathbf{q}, \omega) \mathbf{E}_{\mathbf{G}^{\prime}}(\mathbf{q}, \omega)
$$

This is the microscopic dielectric tensor. But for comparison with spectroscopy, we would like the macroscopic dielectric function:

$$
\mathbf{D}_{\text {mac }}(\omega)=\underline{\underline{\varepsilon}}_{\text {mac }}(\omega) \mathbf{E}_{\text {mac }}(\omega)
$$

Problem: we cannot calculate the macroscopic dielectric function directly! This would ignore the local-field effects (microscopic fluctuations).

Homogeneous systems

In a homogeneous, isotropic system, things would be easy:

$$
\underline{\varepsilon}_{m a c}^{\mathrm{hom}}(\omega)=\lim _{q \rightarrow 0} \underline{\underline{\varepsilon}}^{\mathrm{hom}}(\mathbf{q}, \omega)
$$

and $\quad \underline{\underline{\varepsilon}}^{\mathrm{hom}}(\mathbf{q}, \omega)=\varepsilon_{L}^{\mathrm{hom}}(\mathbf{q}, \omega) \hat{q} \hat{q}^{T}+\varepsilon_{T}^{\mathrm{hom}}\left(\underline{\underline{1}}-\hat{q} \hat{q}^{T}\right)$
and $\quad \varepsilon_{L}^{\text {hom }}(0, \omega)=\varepsilon_{T}^{\text {hom }}(0, \omega)$

The connection to optics is via the refractive index:

$$
\begin{aligned}
& \varepsilon_{m a c}(\omega)=\tilde{n}^{2} \\
& \operatorname{Re} \varepsilon_{m a c}=n^{2}+\kappa^{2} \\
& \operatorname{Im} \varepsilon_{m a c}=2 n \kappa
\end{aligned}
$$

The macroscopic dielectric function

For cubic symmetry, one can prove that

$$
\varepsilon_{m a c}(\omega)=\lim _{q \rightarrow 0}\left[\left|\varepsilon_{\mathbf{G G}^{\prime}}^{-1}(\mathbf{q}, \omega)\right|_{\substack{\mathbf{G}=0 \\ \mathbf{G}^{\prime}=0}}\right]^{-1}
$$

$\varepsilon_{\mathbf{G G}^{\prime}}(\mathbf{q}, \omega)$: longitudinal component of dielectric tensor (a.k.a. dielectric matrix)

To make progress, we need a connection with response theory:
scalar dielectric function:

$$
V_{1}(\mathbf{r}, \omega)=\int d^{3} r^{\prime} \varepsilon\left(\mathbf{r}, \mathbf{r}^{\prime}, \omega\right)\left[V_{1}(\mathbf{r}, \omega)+\int d^{3} r^{\prime \prime} \frac{n_{1}\left(\mathbf{r}^{\prime \prime}, \omega\right)}{\left|\mathbf{r}^{\prime}-\mathbf{r}^{\prime \prime}\right|}\right]
$$

so that $\quad \varepsilon^{-1}\left(\mathbf{r}, \mathbf{r}^{\prime}, \omega\right)=\delta\left(\mathbf{r}-\mathbf{r}^{\prime}\right)+\int d^{3} r^{\prime \prime} \frac{\chi\left(\mathbf{r}^{\prime \prime}, \mathbf{r}^{\prime}, \omega\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime \prime}\right|}$ and for a periodic system,

$$
\varepsilon_{\mathbf{G G}^{\prime}}^{-1}(\mathbf{q}, \omega)=\delta_{\mathbf{G G}^{\prime}}+V_{\mathbf{G}}(\mathbf{q}) \chi_{\mathbf{G G}^{\prime}}(\mathbf{q}, \omega)
$$

The macroscopic dielectric function

From this, one obtains

$$
\varepsilon_{\text {mac }}(\omega)=1-\lim _{q \rightarrow 0} V_{0}(\mathbf{q}) \bar{\chi}_{00}(\mathbf{q}, \omega)
$$

There is a subtle, but very important point to be noted. Here we use a modified response function $\bar{\chi}_{\mathbf{G G}^{\prime}}(\mathbf{q}, \omega)$:

$$
\begin{aligned}
\bar{\chi}_{\mathbf{G G}^{\prime}}(\mathbf{q}, \omega) & =\chi_{s \mathbf{G G}^{\prime}}(\mathbf{q}, \omega)+\sum_{\mathbf{G}_{1} \mathbf{G}_{2}} \chi_{s \mathbf{G G}_{1}}(\mathbf{q}, \omega) \\
& \times\left\{\bar{V}_{\mathbf{G}_{1}}(\mathbf{q}) \delta_{\mathbf{G}_{1} \mathbf{G}_{2}}+f_{x c \mathbf{G}_{1} \mathbf{G}_{2}}(\mathbf{q}, \omega)\right\} \bar{\chi}_{\mathbf{G}_{2} \mathbf{G}^{\prime}}(\mathbf{q}, \omega)
\end{aligned}
$$

where the long-range part of the Coulomb interaction has been removed:

$$
\bar{V}_{\mathbf{G}}(\mathbf{q})=\left\{\begin{array}{ccc}
0 & \text { for } \quad \mathbf{G}=0 \\
\frac{4 \pi}{|\mathbf{q}+\mathbf{G}|^{2}} & \text { for } & \mathbf{G} \neq 0
\end{array}\right.
$$

$\delta n_{\mathbf{G}}(\mathbf{q}, \omega)=\sum_{\mathbf{G}^{\prime}} \chi_{s \mathbf{G G}^{\prime}}(\mathbf{q}, \omega)\left\{\delta V_{\mathbf{G}^{\prime}}^{e x t}(\mathbf{q}, \omega)+\sum_{\mathbf{G}^{\prime \prime}} f_{\mathbf{G}^{\prime} \mathbf{G}^{\prime \prime}}^{H x}(\mathbf{q}, \omega) \delta n_{\mathbf{G}^{\prime \prime}}(\mathbf{q}, \omega)\right\}$
Loss function:
response to a microscopic external scalar potential. Loss spectrum includes plasmons.

Density eigenmode: set

$$
\delta V_{\mathbf{G}^{\prime}}^{\text {ext }}(\mathbf{q}, \omega)=0
$$

Optical absorption:
response to total
macroscopic
classical perturbation.
Optical spectrum includes excitons.

Density eigenmode: set

$$
\delta V_{\mathbf{G}^{\prime}}^{\text {ext }}(\mathbf{q}, \omega)+f_{\mathbf{0 0}}^{H} \delta n_{\mathbf{0}}(\mathbf{q}, \omega)=0
$$

Excitation energies from TDDFT

Excitation energies follow
from eigenvalue problem
(Casida 1995):

\mathbf{B}^{*} \& \mathbf{A}^{*}\end{array}\right)\binom{\mathbf{X}}{\mathbf{Y}}=\Omega_{n}\left($$
\begin{array}{cc}-\mathbf{1} & \mathbf{0} \\
\mathbf{0} & \mathbf{1}\end{array}
$$\right)\binom{\mathbf{X}}{\mathbf{Y}}\)

$$
\begin{aligned}
& A_{v c \mathbf{k}, v^{\prime} c^{\prime} \mathbf{k}^{\prime}}=\left(E_{c \mathbf{k}}-E_{v \mathbf{k}}\right) \delta_{v v^{\prime}} \delta_{c c^{\prime}} \delta_{\mathbf{k} \mathbf{k}^{\prime}}+F_{v c \mathbf{k}, v^{\prime} c^{\prime} \mathbf{k}^{\prime}}^{H x c} \\
& B_{v c \mathbf{k}, v^{\prime} c^{\prime} \mathbf{k}^{\prime}}=F_{v c \mathbf{k}, v^{\prime} c^{\prime} \mathbf{k}^{\prime}}^{H x}
\end{aligned}
$$

$$
F_{v c k, v^{\prime} \mathbf{k}^{\prime}}^{H}=\frac{2}{\mathrm{~V}} \sum_{\mathbf{G} \neq 0} \frac{4 \pi}{G^{2}}\langle c \mathbf{k}| e^{i \mathbf{G} \mathbf{r}}|v \mathbf{k}\rangle\left\langle v^{\prime} \mathbf{k}^{\prime}\right| e^{-i \mathbf{G} \mathbf{r}}\left|c^{\prime} \mathbf{k}^{\prime}\right\rangle
$$

$$
F_{v c k, v^{\prime} \mathbf{k}^{\prime}}^{x c}=\frac{2}{\mathrm{~V}} \lim _{\mathbf{q} \rightarrow \mathbf{0}} \sum_{\mathbf{G G}} f_{x c, \mathbf{G} \mathbf{G}^{\prime}}(\mathbf{q})\langle c \mathbf{k}| e^{i\left(\mathbf{q}+\mathbf{G}^{\prime}\right) \mathbf{r}}|v \mathbf{k}\rangle\left\langle v^{\prime} \mathbf{k}^{\prime}\right| e^{-i(\mathbf{q}+\mathbf{G}) \mathbf{r}}\left|c^{\prime} \mathbf{k}^{\prime}\right\rangle
$$

Direct calculation of exciton binding energies

Tamm-Dancoff Approximation (TDA)

Using time-reversal symmetry, Full Casida eq. can be transformed into

$$
\sum_{v^{\prime} c^{\prime} \mathbf{k}^{\prime}}\left[\delta_{v \mathbf{k}, v^{\prime} \mathbf{k}^{\prime}} \delta_{c \mathbf{k}, c^{\prime} \mathbf{k}^{\prime}} \omega_{v c \mathbf{k}}^{2}+2 \sqrt{\omega_{c v \mathbf{k}} \omega_{c^{\prime} v^{\prime} \mathbf{k}^{\prime}}} F_{v c \mathbf{k}, v^{\prime} c^{\prime} \mathbf{k}^{\prime}}^{H x c}\right] Z_{v^{\prime} c^{\prime} \mathbf{k}^{\prime}}=\Omega_{n}^{2} Z_{v c \mathbf{k}}
$$

T. Sander, E. Maggio, and G. Kresse, PRB 92, 045209 (2015)

More expensive than calculating $\operatorname{Im} \varepsilon(\omega)$, but more precise (no artificial line broadening)

RPA and ALDA both bad!

- absorption edge red shifted (electron self-interaction)
- first excitonic peak missing (electron-hole interaction)

Why does the LDA fail??

- lacks long spatial range
- need new classes of xc functionals
G. Onida, L. Reining, A. Rubio, RMP 74, 601 (2002)
S. Botti, A. Schindlmayr, R. Del Sole, L. Reining, Rep. Prog. Phys. 70, 357 (2007)

The xc kernel for periodic systems

$$
f_{x c}\left(\mathbf{r}, \mathbf{r}^{\prime}, \omega\right)=\sum_{\mathbf{q} \in F B Z} \sum_{\mathbf{G}, \mathbf{G}^{\prime}} e^{i(\mathbf{q}+\mathbf{G}) \mathbf{r}} f_{x c, \mathbf{G} \mathbf{G}^{\prime}}(\mathbf{q}, \omega) e^{-i\left(\mathbf{q}+\mathbf{G}^{\prime}\right) \mathbf{r}}
$$

TDDFT requires the following matrix elements as input:
$F_{v c \mathbf{k}, \nu^{\prime} c^{\prime} \mathbf{k}^{\prime}}^{x c}=\lim _{\mathbf{q} \rightarrow \mathbf{0}} \sum_{\mathbf{G G}^{\prime}} f_{x c, \mathbf{G} \mathbf{G}^{\prime}}(\mathbf{q}, \omega)\langle c \mathbf{k}| e^{i(\mathbf{q}+\mathbf{G}) \cdot \mathbf{r}}|v \mathbf{k}\rangle\left\langle v^{\prime} \mathbf{k}^{\prime}\right| e^{-i(\mathbf{q}+\mathbf{G}) \cdot \mathbf{r}}\left|c^{\prime} \mathbf{k}^{\prime}\right\rangle$

Most important: long-range $(\mathbf{q} \rightarrow 0)$ limit of "head" $\left(\mathbf{G}=\mathbf{G}^{\prime}=0\right)$:
$\langle c \mathbf{k}| e^{i \mathbf{q r}}|\nu \mathbf{k}\rangle \xrightarrow[\mathbf{q} \rightarrow \mathbf{0}]{ } \mathbf{q}$
$f_{x c, 00}^{e x a c t}(\mathbf{q}, \omega) \xrightarrow[\mathbf{q} \rightarrow 0]{ } \frac{1}{q^{2}}$
but $\quad f_{x c, 00}^{A L D A}(\mathbf{q}) \xrightarrow[\mathbf{q} \rightarrow 0]{ }$ const.

Therefore, no excitons in ALDA!

The exact xc kernel can be written as

$$
f_{x c}=f_{x c}^{q p}+f_{x c}^{e x}
$$

"quasiparticle",
opens the gap
$\chi_{K S} \rightarrow \chi_{q p}$

- Usually, $f_{x c}^{q p}$ is neglected. Instead, one uses hybrids, GW, or DFT+ scissors, which directly approximates $\chi_{q p}$
- Only $f_{x c}^{e x}$ is then approximated
- LRC (long-range corrected) kernel (with fitting parameter α):
(L. Reining et al., 2002)

$$
f_{x c, \mathbf{G G}}^{L R C}(\mathbf{q})=-\frac{\alpha}{|\mathbf{q}+\mathbf{G}|^{2}} \delta_{\mathbf{G G}^{\prime}}
$$

- "bootstrap" kernel (S. Sharma et al., PRL 107, 186401 (2011)

$$
f_{x c, \mathbf{G G ^ { \prime }}}^{\text {boot }}(\mathbf{q}, \omega)=\frac{\varepsilon_{\mathbf{G G}^{\prime}}^{-1}(\mathbf{q}, 0)}{\chi_{s 00}(\mathbf{q}, 0)}
$$

(depends on unoccupied bands, may need large number of bands)

- Functionals from many-body theory: (requires matrix inversion)

exact exchange

"nanoquanta" kernel, reverse-engineered from BSE
(L. Reining et al., 2002)
- Local functionals (ALDA/GGA) don't work
- Nanoquanta kernel: accurate but expensive Reining, Olevano, Rubio, Onida, PRL 88, 066404 (2002)
- Long-range corrected (LRC) kernel: simple but ad-hoc Botti et al., PRB 69, 155112 (2004)
- Bootstrap kernel: several versions

Sharma, Dewhurst, Sanna and Gross, PRL 107, 186401 (2011)
Rigamonti, Botti, Veniard, Draxl, Reining \& Sottile, PRL 114, 146402 (2015)

- Jellium with a gap:

Trevisanutto et al., PRB 87, 205143 (2013)

- Current-TDDFT:
A.J. Berger, PRL 115, 137402 (2015)
- Hybrid functionals, meta-GGAs:

B3LYP: Bernasconi et al. PRB 83, 195325 (2011)
HSE: Paier, Marsman and Kresse, PRB 78, 121201 (2008)
VS98/TPSS: Nazarov and Vignale, PRL 107, 216401 (2011)
Range separated: Refaely-Abramson et al., PRB 92, 081204 (2015)

The family of LRC/Bootstrap xc kernels

LiNbO_{3}

With some tricks, LRC kernel can produce quite accurate optical spectra!
Systematic assessment: workshop talk on Monday.
Friedrich, Schmidt, Schindlmayr \& Sanna, Phys. Rev. Mater. 1, 034401 (2017)

Young-Moo Byun and C. A. Ullrich, PRB 95, 205136 (2017)

Optical spectra with range-separated hybrid

pentacene

S. Refaely-Abramson, M. Jain,
S. Sharifzadeh, J.B. Neaton,
L. Kronik, PRB 92, 081204 (2015)

Contains adjustable range separation parameter

Back to the basics

- How does the simple picture of excitons as bound e-h pairs come out of the general formalism?
- How are TDDFT and MBPT different?

Back to the basics

$$
\begin{aligned}
& \sum_{v^{\prime} \mathbf{k}^{\prime}}\left[\delta_{v \mathbf{k}, \mathbf{k}^{\prime} \mathbf{k}^{\prime}} \delta_{c k, c^{\prime} \mathbf{k}^{\prime}} \omega_{c c \mathbf{k}}+F_{v c k, v^{\prime} c^{\prime} \mathbf{k}^{\prime}}^{H x c}\right] X_{v^{\prime} \mathbf{k}^{\prime}}+\sum_{v^{\prime} c^{\prime} \mathbf{k}^{\prime}} F_{v k, v^{\prime} v^{\prime} k^{\prime} \mathbf{k}^{\prime}}^{H x c} Y_{v^{\prime} c^{\prime} \mathbf{k}^{\prime}}=-\Omega_{n} X_{v c k} \\
& \sum_{v^{\prime} \mathbf{k}^{\prime}} F_{v c k, v^{\prime} \mathbf{c}^{\prime} \mathbf{k}}^{H x c} X_{v^{\prime} \mathbf{c}^{\prime} \mathbf{k}^{\prime}}+\sum_{v^{\prime} \mathbf{k}^{\prime} \mathbf{k}^{\prime}}\left[\delta_{v \mathbf{k}, v^{\prime} \mathbf{k}^{\prime}} \delta_{c \mathbf{k}, c^{\prime} \mathbf{k}^{\prime}} \omega_{c \mathrm{ck}}+F_{v c k, k c^{\prime} \mathbf{k}^{\prime}}^{H x c}\right] Y_{v^{\prime} \mathbf{k}^{\prime}}=\Omega_{n} Y_{v c \mathbf{k}}
\end{aligned}
$$

Tamm-Dancoff Approximation (TDA)

Ignore the Hartree term (only gives local-field corrections):

1. Two-band model: only one valence and conduction band
2. Effective-mass approximation with parabolic bands:

$$
\begin{aligned}
\omega_{c v \mathbf{k}} & =\varepsilon_{c \mathbf{k}}-\varepsilon_{v \mathbf{k}} \\
& =\frac{\hbar^{2} k^{2}}{2 m_{c}}+\frac{\hbar^{2} k^{2}}{2 m_{v}}+E_{g} \\
& =\frac{\hbar^{2} k^{2}}{2 m_{r}}+E_{g}
\end{aligned}
$$

reduced electron-hole effective mass:

$$
m_{r}^{-1}=m_{c}^{-1}+m_{v}^{-1}
$$

$\frac{\hbar^{2} k^{2}}{2 m_{r}} Y_{v c \mathbf{k}}+\sum_{\mathbf{k}^{\prime}} F_{v c \mathbf{k}, v c \mathbf{k}^{\prime}}^{x c} Y_{v c \mathbf{k}^{\prime}}=\left(\Omega_{n}-E_{g}\right) Y_{v c \mathbf{k}}$
Now look at the coupling matrix elements!

$$
\begin{aligned}
& F_{v \mathbf{k}, v^{\prime} c^{\prime} \mathbf{k}^{\prime}}^{T D D F{ }^{\prime}}=\int d \mathbf{r} \int d \mathbf{r}^{\prime} \varphi_{c \mathbf{k}}^{*}(\mathbf{r}) \varphi_{v \mathbf{k}}(\mathbf{r}) f_{x c}\left(\mathbf{r}, \mathbf{r}^{\prime}\right) \varphi_{v^{\prime} \mathbf{k}^{\prime}}^{*}\left(\mathbf{r}^{\prime}\right) \varphi_{c^{\prime} \mathbf{k}^{\prime}}\left(\mathbf{r}^{\prime}\right) \\
& F_{v c \mathbf{k}, v^{\prime} c^{\prime} \mathbf{k}^{\prime}}^{B S E}=\int d \mathbf{r} \int d \mathbf{r}^{\prime} \varphi_{v^{\prime} \mathbf{k}^{\prime}}^{*}(\mathbf{r}) \varphi_{v \mathbf{k}}(\mathbf{r}) W\left(\mathbf{r}, \mathbf{r}^{\prime}\right) \varphi_{c \mathbf{k}}^{*}\left(\mathbf{r}^{\prime}\right) \varphi_{c^{\prime} \mathbf{k}^{\prime}}\left(\mathbf{r}^{\prime}\right)
\end{aligned}
$$

Fourier transformation:

$$
W\left(\mathbf{r}, \mathbf{r}^{\prime}\right)=\sum_{\mathbf{G G}^{\prime}} \sum_{\mathbf{q} \in \mathrm{BZ}} e^{i(\mathbf{q}+\mathbf{G}) \cdot \mathbf{r}} W_{\mathbf{G G}^{\prime}}(\mathbf{q}) e^{-i\left(\mathbf{q}+\mathbf{G}^{\prime}\right) \cdot \mathbf{r}^{\prime}}
$$

$$
\begin{aligned}
& F_{v c \mathbf{k}, v^{\prime} \mathbf{k}^{\prime}}^{T D D F T}=\sum_{\mathbf{G G}^{\prime} \mathbf{q}} f_{\mathbf{G}}^{x c}(\mathbf{q})\langle c \mathbf{k}| e^{i(\mathbf{q}+\mathbf{G}) \cdot \mathbf{r}}|v \mathbf{k}\rangle\left\langle v^{\prime} \mathbf{k}^{\prime}\right| e^{-i\left(\mathbf{q}+\mathbf{G}^{\prime}\right) \cdot \mathbf{r}}\left|c^{\prime} \mathbf{k}^{\prime}\right\rangle \\
& \left.F_{v c \mathbf{k}, c^{\prime} \mathbf{k}^{\prime}}^{B S E}=\sum_{\mathbf{G G}^{\prime} \mathbf{q}} W_{\mathbf{G G}^{\prime}}(\mathbf{q}) v^{\prime} \mathbf{k}^{\prime}\right\rangle e^{i(\mathbf{q}+\mathbf{G}) \cdot \mathbf{r}}|v \mathbf{k}\rangle\langle\mathbf{k}| e^{-i\left(\mathbf{q}+\mathbf{G}^{\prime}\right) \cdot \mathbf{r}}\left|c^{\prime} \mathbf{k}^{\prime}\right\rangle \\
& W_{\mathbf{G G}^{\prime}}(\mathbf{q})=-4 \pi \frac{\varepsilon_{\mathbf{G G}}}{-1}(\mathbf{q}, \omega=0) \\
& \left|\mathbf{q}+\mathbf{G}^{\prime}\right|^{2}
\end{aligned}
$$

Optical transitions $(\mathbf{q} \rightarrow 0):$ very different behavior of the matrix elements!

$$
\begin{aligned}
\left\langle v \mathbf{k}^{\prime}\right| e^{i(\mathbf{q}+\mathbf{G}) \cdot \mathbf{r}}|\nu \mathbf{k}\rangle & \rightarrow \delta_{\mathbf{q}, \mathbf{k}-\mathbf{k}^{\prime}} \delta_{\mathbf{G}, 0} \\
\langle c \mathbf{k}| e^{i(\mathbf{q}+\mathbf{G}) \cdot \mathbf{r}}|v \mathbf{k}\rangle & \rightarrow \frac{\mathbf{G} \mathbf{p}_{c v}(\mathbf{k})}{\varepsilon_{c}(\mathbf{k})-\varepsilon_{v}(\mathbf{k})}
\end{aligned}
$$

$$
\begin{aligned}
& \longleftrightarrow F_{v c k, v k \mathbf{k}}^{T D D F T}=\sum_{\mathbf{G G}} f_{\mathbf{G} G^{\prime}}^{x c}(\mathbf{q} \rightarrow \mathbf{0}) \frac{\mathbf{G G}^{\prime} p_{c v}(\mathbf{k}) p_{v c}\left(\mathbf{k}^{\prime}\right)}{\left(\varepsilon_{c}(\mathbf{k})-\varepsilon_{v}(\mathbf{k})\right)\left(\varepsilon_{c}\left(\mathbf{k}^{\prime}\right)-\varepsilon_{v}\left(\mathbf{k}^{\prime}\right)\right)} \\
& \Longleftrightarrow F_{v c k, v \mathbf{k}}^{B S E}=W_{00}\left(\mathbf{k}-\mathbf{k}^{\prime}\right)
\end{aligned}
$$

F. Bechstedt, Many-Body Approach to Electronic Excitations (Springer, 2015)

Derivation of Wannier equation

$$
\frac{\hbar^{2} k^{2}}{2 m_{r}} Y_{v c \mathbf{k}}+\sum_{\mathbf{k}^{\prime}} F_{v c \mathbf{k}, v c \mathbf{k}^{\prime}}^{x c} Y_{v \mathbf{k}^{\prime}}=\left(\Omega_{n}-E_{g}\right) Y_{v c \mathbf{k}}
$$

Fourier transformation leads to the following equations:

$$
-\frac{\hbar^{2} \nabla^{2}}{2 m_{r}} Y(\mathbf{r})+\int d \mathbf{r}^{\prime} F^{T D D F T}\left(\mathbf{r}, \mathbf{r}^{\prime}\right) Y\left(\mathbf{r}^{\prime}\right)=\left(\Omega_{n}-E_{g}\right) Y(\mathbf{r})
$$

The TDDFT excitonic equation has a nonlocal potential.

$$
\left[-\frac{\hbar^{2} \nabla^{2}}{2 m_{r}}-\frac{1}{\varepsilon r}\right] Y(\mathbf{r})=\left(\Omega_{n}-E_{g}\right) Y(\mathbf{r})
$$

BSE reduces to the original Wannier equation.

- $\mathrm{V}_{\text {eh }}$ is dominant along the diagonal.
- BSE and TDDFT look similar, but TDDFT too shallow (no multiple bound excitons)
Z.-H. Yang, Y. Li, and C. A. Ullrich, JCP 137, 014513 (2012)

$F_{B S E, \mathbf{k k}^{\prime}}^{i j i, m n}=2\langle i j| f_{H}|m n\rangle-\langle i m| W|j n\rangle \quad F_{T D D F T, \mathbf{k k}^{\prime}}^{i j, m n}=2\langle i j| f_{H}|m n\rangle+2\langle i j| f_{x c}|m n\rangle$
Depends on $\quad W_{\mathbf{G G}^{\prime}}(\mathbf{q}) \quad$ Depends on $f_{x c, \mathbf{G G}}{ }^{\prime}(\mathbf{q} \rightarrow 0, \omega)$
- Impossible to reproduce BSE coupling matrix with adiabatic xc
-xc needs complex ω-dependence for excitonic Rydberg series, and for better spectral shape
Z.-H. Yang, Y. Li, and C. A. Ullrich, J. Chem. Phys. 137, 014513 (2012)

Beyond the adiabatic approximation (1D model)

Botti et al., PRB (2005): LRC with $\alpha+\beta \omega^{2}$

- TDDFT is capable of describing excitons in solids with a gap. The main formalism is similar to the BSE, but there are some important differences in the details.
- We now have a number of approximate xc kernels which can produce bound excitons, but none of them is sufficiently accurate (without empirical fitting). More work is needed.
- Generalized TDDFT (i.e., hybrid functionals) may be the best way to go: can be viewed as simplified BSE plus local xc.
- There are many challenges:
- excitons in more complex materials,
- Excitonic Rydberg series
- Biexcitons, trions etc.
- real-time exciton dynamics, including lattice relaxation

Textbooks:
H. Haug and S.W. Koch, Quantum Theory of the Electronic and Optical Properties of Semiconductors (World Scientific, 2009)
P. Yu and M. Cardona, Fundamentals of Semiconductors (Springer, 2010)
F. Bechstedt, Many-Body Approach to Electronic Excitations (Springer, 2015)
R.M. Martin, L. Reining, D.M. Ceperley, Interacting Electrons: Theory and Computational Approaches (Cambridge, 2016)

Review Articles:

G. Onida, L. Reining, R. Rubio, RMP 74, 601 (2002)
S. Botti, A. Schindlmayr, R. Del Sole, L. Reining, Rep. Prog. Phys. 70, 357 (2007)
C.A. Ullrich and Z.-H. Yang, Topics in Current Chem. 368 (2015)
V. Turkowski, N.U. Din, T.S. Rahman, Computation 5, 39 (2017)
S. Sharifzadeh, J. Phys.: Cond. Mat. 30, 153002 (2018)

