Accuracy concerns in TDDFT:
Focus on exact exchange and
charge-transter error
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* Jacob’s ladder of functionals — how do they do for TDDFT excitation
energies? (You want acronyms? I'll give you the acronyms!!)

* Some challenges for TDDFT

 What is a charge-transfer transition?

 What is the TDDFT charge-transfer error and why does it exist?
* Hybrid and range-separated hybrid functionals

e Optimal tuning of long-range corrected hybrids



What kinds of transitions does TDDFT get correct?

The answer depends on the functional.... Some people think that you can get any excitation energy
you want, by simply choosing the appropriate functional.

This is because (usually) increasing the amount of exact
exchange in the functional will lead to higher excitation
energies.

Although we ideally want a functional that will be accurate
for all excitations, we might settle for one that has errors,
but treats various kinds of excitations equally well /
equally poorly. Then, we might still be able to:

* Get the correct ordering of states
RARTREE WORLD * Compare various kinds of chromophores

* Accurately take into account environmental effects

Perdew, Ruzsinszky, Constantin, Sun, Csonka
J. Chem. Theory Comp., 2009, 5, 902
DOI: 10.1021/ct800531s



How accurate is TDDFT for excitation energies?
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comparing 614 experimental A,,,, to vertical transition energies
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What kinds of transitions does TDDFT have

problems modeling? */f/j./‘;/z
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polyenes). This could be fixed using a

frequency dependent functional, i.e. going
beyond the adiabatic approximation. Also
leads to incorrect topology of potential , - 5
energy surfaces.
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https://chemiezauber.de/index.php/inhalt/q2/farbmittel-und-textilien/struktur-von-
farbstoffmolekuelen/lichtabsorption-von-organischen-verbindungen/410-chromophore
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What is a charge-transfer transition?
Charge-transfer complex

From Wikipedia, the free encyclopedia

A charge-transfer complex (CT complex) or electron-donor-acceptor complex is an association of two or
more molecules, or of different parts of one large molecule, in which a fraction of electronic charge is transferred
between the molecular entities. The resulting electrostatic attraction provides a stabilizing force for the molecular
complex. The source molecule from which the charge is transferred is called the electron donor and the receiving
species is called the electron acceptor.

May be on the same molecule (donor group and acceptor group) or between molecules
Small overlap between donor and acceptor densities (movement of electron across space)
Often associated with a large change in dipole moment

The Coulombic attraction between the excited electron and hole should be smaller than for a valence transition



Examples of charge-transter transitions  « yamsiions mportant for
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What should the excitation energy be?

charge-transfer excited state
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Which is smaller: the optical gap (the
excitation energy) or the band gap?
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Kronik, Stein, Refaely-Abramson, and Baer
J. Chem. Theory Comput. 2012, 8, 1515-1531

dx.doi.org/10.1021/ct2009363

Electron-hole Coulombic electrostatic
attraction (aka exciton binding energy) leads
to a smaller optical gap.

Important for organic molecules,
which have a small dielectric
constant, leading to excitonic states.
Not as important for conductors,
which generally screen the excited
electron from the hole.



What is the charge-transfer (CT) error in TDDFT?
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| 100% exact exchange
—> gives the correct distance dependence
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|B3LYP (hybrid with 20% exact exchange)

SVWN / LB94

0.0

4.0 5.0 6.0 7.0
R (Ang)

Dreuw, Weisman, Head-Gordon
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Similar behavior for LSDA, GGAs
(BLYP, PBE), meta-GGAs

10.0

The TDDFT CT excitation
energy does not decay as
1/R as would be expected
for a Coulombic
interaction

The CT states are too low
in energy.


http://dx.doi.org/10.1063/1.1590951

Why are charge-transtfer states s
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Dreuw, Head-Gordon
Chemical Reviews, 105, 4009, 2005
DOI: 10.1021/cr0505627
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The MO energies are quite different. The
band gap is usually much larger with HF
than DFT.

But the key difference for charge-transfer
states comes from this derivative term,
which represents the change in the
Fock/Kohn-Sham matrix due to the
change in the density

Exact exchange in the ground state leads to the correct Coulombic interaction in the TDDFT/TDHF equations

Note: CIS also has a charge-transfer error, getting these states too high in energy,
see Subotnik, J. Chem. Phys. 2011, 135, 071104



Why is there a charge-transter error for
TDDFT but not TDHF?

The density dependent part of a general Fock matrix element F,,, for a closed-shell system is

FMV = Z PAG[Z(HVIAO') — (MAIVO')] (MVMO‘) — j dr,dr, <Pu(r1)§0v(7"1)
Ao Coulomb (J) exchange (K)

1
T A (r2) 9 (12)
|11 2|

When deriving the linear response TDHF/TDDFT equations in particle-hole space (where we solve the matrix / Casida equations),
the term we want is

i Where i, j are occupied orbitals, and a,b are the virtual (unoccupied) orbitals This s hovy exact
dPjp exchange gives the
9 correct Coulombic
Fig = Z Pys12(ia|do) — (id]ao)] 55 Fia = Z Piy[2(ialjb) — (ij|ab)] interaction between
1o Jb 7D the electron and hole.
0F;
3p. = 2, [20aeljb) = lab)

b

For the case where j=i and b=a, we get a Coulomb term from what was the exchange term: [2(ial|ia) — (ii|aa)]

This is what we have in the A matrix for TDHF:  Ajq jp = (&4 — €684, + 2(ialjb) — (ij|ab)



Do hybrid functionals fix the TDDFT charge
transfer error?

Examples: B3LYP, PBEO, BH&HLYP, M06-2X, M0O6-HF
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It will depend on the % of exact exchange.

Question: Why not use 100% exact exchange?

Answer: The local DFT exchange balances the local DFT correlation



How do we get both short-range DFT local
exchange and correct long-range exact exchange?

The Coulomb operator can be separated into short-range and long-range components:

1 1—
_ 1= perflon,) + perf(wri;) Leads to a range-separated hybrid (RSH) functional
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Long-range corrected functionals

Using 100% exact exchange at long range yields a ‘long-range corrected (LRC or LC) functional.

These functionals have the correct distance dependence for the energies of charge-
transfer transitions, and are very useful for modeling charge-transfer transitions.
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Examples of long-range corrected + short range exchange: LC-wPBEh, wB97x (not 100% at long-range)



Error comparisons for
PBE, B3LYP, CAM-B3LYP
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Acenes N-phenylpyrrole (PP) 4-(N,N-dimethylamino)
(n = 1-5)

benzonitrile (DMABN)
Polyacetylene (PA)
oligomers (n = 2-5)

N, CO H,CO HCl

A = measure of overlap (quantifies CT character)
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An extreme CT problem: molecules in solution

trans-thiophenyl-p-coumarate

Need Coulombic stabilization
of electron and hole

pCT- snapshot

lowest excitation energy
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