Introduction to Ground State Density Functional Theory Part II

Adam Wasserman
Department of Chemistry and
Department of Physics and Astronomy
Purdue University

Eleven references for basics of ground-state DFT

1. K. Burke, $A B C$ of $D F T$; http://dft.uci.edu
2. J.P. Perdew and S. Kurth, Density Functionals for Non-relativistic Coulomb Systems in the New Century, in A Primer in Density Functional Theory, edited by C. Fiolhais et al. (Springer-Verlag, NY, 2003).
3. R.M. Dreizler and E.K.U. Gross, Density Functional Theory (Springer-Verlag, Berlin, 1990).
4. R. Parr and W. Yang, Density Functional Theory of Atoms and Molecules (Oxford, New York, 1989).
5. J.P. Perdew, What do the Kohn-Sham energies mean? How do atoms dissociate?, in NATO ASI Ser., Ser.B 123 (Density Funct. Methods Phys.), 265 (1985).
6. G.F. Giuliani and G. Vignale, Chapter 7 in Quantum Theory of the Electron Liquid, (Cambridge University Press, 2005).
7. E.J. Baerends, O.V. Gritsenko, and R. van Meer, Perspective: The Kohn-Sham gap, the fundamental gap, and the optical gap: the physical meaning of occupied and virtual KohnSham orbital energies, Phys. Chem. Chem. Phys. 15, 16408 (2013).
8. E.J. Baerends, Chemical Potential, etc. Phys. Chem. Chem. Phys. 24, 12745 (2022).
9. A. Ruzsinsky and J.P. Perdew, Twelve outstanding problems in ground-state density functional theory: A bouquet of puzzles, Comp. Theor. Chem. 963, 2 (2011).
10. A.J. Cohen, P. Mori-Sanchez, and W. Yang, Challenges for Density Functional Theory, Chem. Rev. 112, 289 (2012).
11. A. Wasserman, J. Nafziger, K. Jiang, M-C.Kim, E. Sim, and K. Burke, The Importance of Being Inconsistent, Ann. Rev. Phys. Chem. 68, 555 (2017).

Outline

Method for this lecture: Go back to the basics from yesterday and discuss selected FAQ and FHM

- Simple examples of density functionals
- Chemical Potential
- Derivative Discontinuities
- Key errors (self-interaction, delocalization, static-correlation)

Self-Consistent Equations Including Exchange and Correlation Effects*

W. Kоive aso L. J. Sinaz
Cuinmily of California, Sae Dirgo, La Jilla, Calşornit
(Recivived 21 Juse 1905)

Nole addad in fromer. We thinill like to print out that
it is pooulion, formaly, to riglase the many-electon
problem by an erouts equivalient set of seff-coneiarut
ene electron equatiose. This is secumplifod quite
simply try uning the exprosion (2.2) [withonat the ap-
proilmation $(2,3)]$ in the ebtrgy variational principle.
This feule to a set of equations, ahalogonas is Fqus.
(24)-(297, bot wich form) replead by ath effective
wee porticle potential twe drined formally ${ }^{\text {an }}$

$$
T_{n}(r)=S E_{n}[n] / \ln (x)
$$

Of coursis, wo explicit form of Nas can be otrained only ii the functional $\Sigma_{n}[n]$, which indule all many body effects, is know = The effotive potential vill repeoduct the exact Aenaity atid the exact total eneray in then given ly

$$
\begin{aligned}
& \Delta=\sum_{x}^{N} N-\frac{1}{2} \iint \frac{N(r) n\left(r^{\prime}\right)}{\left|r-r^{\prime}\right|} d r d r^{\prime}+K_{m}[n] \\
& \\
& \quad-\int N_{m}(r) s(r) d r .
\end{aligned}
$$

Of course, it we make the approximation (2, 3) for $L_{\text {se }}$ the atrone exult furmeiation rovers to the approaimate. thenry at Sec. II.

We first write

$$
\begin{equation*}
G[n]=T_{N}[n]+E_{N}[n], \tag{2.2}
\end{equation*}
$$

where $T[n]$ is the kinetic ebergy of an nystem of nomisterncting ciectrons with density ${ }^{2} n(r)$ and $F_{s i}[n]$ is, by our definition, the exchange and correlation energy of an interncling system with density $n(r)$. For an artirtrary $\pi(x)$, of course, tove can give no simple exnct exprestion for $E_{0}[\mu]$. However, if $N(r)$ is safficiently slowly varying one can thos" that

$$
\begin{equation*}
E_{m}[H]=\int N(r) \epsilon_{n}(n(x)) d r_{3} \tag{23}
\end{equation*}
$$

FAQ and FHM:

\#1: Since $F[n]$ is independent of the external potential, why not calculate F extremely accurately for one system and then use it for all others?

Misunderstood the meaning of "functional".

The most you can do for one system is calculate its energy and density very accurately and that will give you one point of the functional: The value of F for that density.

Then you could write down an expression for $F[n]$ that would reproduce your answer for that density, but there are infinitely many ways to do this.

Some expressions for $F[n]$ produce the exact answer for infinitely many systems.

Outline

- Simplest examples of density functionals
- Chemical Potential
- Derivative Discontinuities
- Key errors (self-interaction, delocalization, static-correlation)

For only 1 electron, $\quad \psi(\vec{r})=\sqrt{n(\vec{r})}$

$$
\begin{aligned}
& -\frac{1}{2} \int d^{3} r \sqrt{n(\vec{r})} \nabla^{2} \sqrt{n(\vec{r})}+\int d^{3} r v(r) n(\vec{r})=E[n] \\
& -\frac{1}{2} \int d \mathbf{r} \sqrt{n(\mathbf{r})} \nabla^{2} \sqrt{n(\mathbf{r})}+\int d \mathbf{r} v(\mathbf{r}) n(\mathbf{r})=E[n] \\
& F[n]=\frac{1}{8} \int d \mathbf{r} \frac{|\nabla n(\mathbf{r})|^{2}}{n(\mathbf{r})}
\end{aligned}
$$

$$
E_{0}=\min _{n}\left\{F[n]+\int d^{3} r v(\mathbf{r}) n(\mathbf{r})\right\}
$$

Reminders from yesterday:

"Orbital-free DFT"

$$
\frac{\delta F[n]}{\delta n(\mathbf{r})}+v(\mathbf{r})=\mu
$$

Reference: $\quad A B C$ of $D F T$, by Kieron Burke
Ref. 1 http://dft.uci.edu

Kinetic energy of M non-interacting and spinless fermions in 1d:

$$
T_{s}\left[\left\{\phi_{j}\right\}\right]=\frac{1}{2} \int_{-\infty}^{+\infty} d x \sum_{j=1}^{M}\left|\frac{d \phi_{j}(x)}{d x}\right|^{2}
$$

Is there some way to get T_{s} without evaluating all the orbitals?

Yes: Write it as a density functional, i.e., an integral over some function of $n(x)$,

$$
n(x)=\sum_{j=1}^{M}\left|\phi_{j}(x)\right|^{2}
$$

Simplest choice: a local approximation:

$$
T_{s}^{\mathrm{loc}}[n]=\frac{\pi^{2}}{6} \int_{-\infty}^{+\infty} d x n^{3}(x)
$$

Construction motivated by:

$$
\begin{gathered}
\varepsilon_{j}=\frac{\pi^{2} j^{2}}{2 L^{2}} \quad j=1,2,3, \ldots \\
E=\frac{\pi^{2}}{2 L^{2}} \sum_{j=1}^{M} j^{2}=\frac{\pi^{2}}{2 L^{2}} M(M+1)(2 M+1) / 6
\end{gathered}
$$

As M increases, density inside the box tends to constant $n=M / L$, so:

$$
\begin{aligned}
E \rightarrow & \frac{\pi^{2}}{6} n^{3} L \\
& \frac{\pi^{2}}{6} \int d x n^{3}(x)
\end{aligned}
$$

Particles in 1d-box

M	$T_{S}^{\text {loc }}$	T_{S}	\%err
1	4.112	4.934	-17
2	21.79	24.67	-12
3	62.92	69.09	-9
25	26875	27264	-1

Particles in 1d-box

M	$T_{S}^{\text {loc }}$	T_{S}	\%err
1	4.112	4.934	-17
2	21.79	24.67	-12
3	62.92	69.09	-9
25	26875	27264	-1

Particles in 1d-box

Particles in 1d-box

In KS-DFT, T_{s} is not calculated this way, but it is obtained "exactly" from the orbitals.

- $T_{\mathrm{s}}^{\text {bloc }}[n]$: simplest example of functional design by satisfaction of exact constraint.
- Local approximations work best for large M, worst for small M.
- Local approximations are crudely correct, but miss details.
- OK, I have a functional. What do I do with it?

$$
\frac{\delta F[n]}{\delta n(\mathbf{r})}+v(\mathbf{r})=\mu
$$

For our non-interacting 1d-spinless fermions:

$$
\begin{aligned}
& \frac{\delta T_{s}}{\delta n(x)}+v(x)=\mu \quad T_{s}[n]=\frac{\pi^{2}}{6} \int d x n^{3}(x) \\
& \frac{\pi^{2}}{6} 3 n^{2}(x)+v(x)=\mu \\
& \frac{\pi^{2}}{2} n^{2}(x)=\mu \text { inside the box } \\
& n(x)=\left\{\begin{array}{cl}
\frac{1}{\pi} \sqrt{2 \mu} & , \text { inside the box. } \\
0 & \text {, outside. }
\end{array}\right.
\end{aligned}
$$

$$
\begin{array}{ll}
\text { So: } & \frac{1}{\pi} \int_{0}^{L} d x \sqrt{2 \mu}=M \\
\text { and: } & \mu=\frac{M^{2} \pi^{2}}{2 L^{2}}=-(E(M-1)-E(M))
\end{array}
$$

FAQ and FHM:

\#1: Since $F[n]$ is independent of the external potential, why not calculate F extremely accurately for one system and then use it for all others?
 Misunderstood the meaning of "universal functional".

\#2: What is the physical meaning of the Lagrange multiplier μ ?

Derivative of the energy with respect to an average number of electrons; e.g. system in contact with a reservoir of electrons.

Inhomogeneous Electron Gas*

P. Hownmeran \dagger

Ende Narmate Superinart, Peris, Yrawis ANB
W. Komat
 and
 (Reorlved ts Jene 1904)

$$
\begin{equation*}
\frac{\delta}{\delta n}\left\{E_{v}[n]-\mu \int n(\mathbf{r}) d \mathbf{r}\right\}=0 \tag{67}
\end{equation*}
$$

$$
\begin{gathered}
\int d \mathbf{r} \delta n(\mathbf{r})=0 \\
\delta F=\int d \mathbf{r}\left(\frac{\delta F[n]}{\delta n(\mathbf{r})}\right) \delta n(\mathbf{r})
\end{gathered}
$$

So, $\frac{\delta F[n]}{\delta n(\mathbf{r})}$ is only defined to within an arbitrary additive

$$
\int d \mathbf{r} n(\mathbf{r})=M
$$

e.g., for only 1 electron,

$$
\begin{gathered}
F[n]=\frac{1}{8} \int d \mathbf{r} \frac{|\nabla n(\mathbf{r})|^{2}}{n(\mathbf{r})} \\
\frac{\delta F[n]}{\delta n(\mathbf{r})}=\frac{1}{8}\left(\frac{|\nabla n(\mathbf{r})|^{2}}{n(\mathbf{r})^{2}}-2 \frac{\nabla^{2} n(\mathbf{r})}{n(\mathbf{r})}\right)
\end{gathered}
$$

$\begin{array}{cl}\text { Schrödinger's } & \frac{\delta F[n]}{\delta n(\mathbf{r})}+v(\mathbf{r})=\mu=E(1)=-I(1)\end{array}$

$$
\begin{gathered}
\mu \sim\left(\frac{\partial E}{\partial N}\right)_{v(\mathbf{r})} \\
\frac{\partial E}{\partial N}=\lim _{\Delta N \rightarrow 0} \frac{E(N+\Delta N)-E(N)}{\Delta N \quad \begin{array}{c}
\text { What can this } \\
\text { (Check Ref.8) }
\end{array}}
\end{gathered}
$$

Why generalize DFT to non-integer numbers of electrons?:
(1) DFT is based on a variational principle, so it is convenient to not have to worry about density variations that do not conserve the number of particles.
(2) Many physical situations where it is convenient to treat N as a continuous variable.

Chapter 7 in
"Quantum Theory of the Electron Liquid", G.F. Giuliani and G.

$$
\hat{K}=\hat{H}-\mu \hat{N}
$$

Vignale (Cambridge University Press, 2005). Ref. 6

$$
v(\mathbf{r}) \longleftrightarrow n(\mathbf{r})
$$

Molecule with M electrons

Ionization Potential:

$$
I(M)=E(M-1)-E(M)
$$

Electron Affinity:

$$
A(M)=E(M)-E(M+1)
$$

$M+1$
M
$M-1$

Ionization Potential:

$I(M)=E(M-1)-E(M)$
 Electron Affinity:

$A(M)<-\mu<I(M)$

$K(M-1)$
$K(M)$
$K(M+1)$

$K(M-1)$
$K(M)$
$K(M+1)$

$A(M)<-\mu<I(M)$

$K(M-1)$
$K(M)$
$K(M+1)$

Ionization Potential:

$$
I(M)=E(M-1)-E(M)
$$

Electron Affinity:

$$
A(M)=E(M)-E(M+1)
$$

$M+1$
M
$M-1$

FAQ and FHM:

\#1: Since $F[n]$ is independent of the external potential, why not calculate F extremely accurately for one system and then use it for all others?
Misunderstood the meaning of "universal functional".
\#2: What is the physical meaning of the Lagrange multiplier μ ?
That depends. Could be -l or could be -A.

FAQ and FHM:

\#1: Since $F[n]$ is independent of the external potential, why not calculate F extremely accurately for one system and then use it for all others?
Misunderstood the meaning of "universal functional".
\#2: What is the physical meaning of the Lagrange multiplier μ ?
That depends. Could be -I or could be -A
\#3: I'm doing a band-structure calculation with a good semilocal functional. Why is my band-gap "wrong"?

Outline

- Simplest possible examples of density functionals
- Chemical Potential
- Derivative Discontinuities
- Key errors (self-interaction, delocalization, static-correlation)

$$
\begin{gathered}
\Omega[n]=\tilde{F}[n]+\int d \mathbf{r}[v(\mathbf{r})-\mu] n(\mathbf{r}) \\
\tilde{F}[n] \equiv \min _{\hat{\Gamma} \rightarrow n(\mathbf{r})} \operatorname{Tr}\left[\hat{\Gamma}\left(\hat{T}+\hat{V}_{e e}\right)\right] \\
\frac{\delta \tilde{F}[n]}{\delta n(\mathbf{r})}=\mu-v(\mathbf{r})
\end{gathered}
$$

Ionization Potential:

$$
I(M)=E(M-1)-E(M)
$$

Electron Affinity:

$$
\begin{aligned}
\Omega[n] & =\tilde{F}[n]+\int d \mathbf{r}[v(\mathbf{r})-\mu] n(\mathbf{r}) \\
\tilde{F}[n] & \equiv \min _{\hat{\Gamma} \rightarrow n(\mathbf{r})} \operatorname{Tr}\left[\hat{\Gamma}\left(\hat{T}+\hat{V}_{e e}\right)\right]
\end{aligned}
$$

$$
\frac{\delta \tilde{F}[n]}{\delta n(\mathbf{r})}=\mu-v(\mathbf{r})
$$

A bit above M : $\left.\frac{\delta \tilde{F}[n]}{\delta n(\mathbf{r})}\right|_{n_{M}^{+}(\mathbf{r})}=-A(M)-v(\mathbf{r})$
A bit below $M:\left.\quad \frac{\delta \tilde{F}[n]}{\delta n(\mathbf{r})}\right|_{n_{M}^{-}(\mathbf{r})}=-I(M)-v(\mathbf{r})$

Fundamental gap:

$$
\left.\frac{\delta \tilde{F}[n]}{\delta n(\mathbf{r})}\right|_{n_{M}^{+}(\mathbf{r})}-\left.\frac{\delta \bar{F}[n]}{\delta n(\mathbf{r})}\right|_{n_{M}^{-}(\mathbf{r})}=I(M)-A(M) \equiv E_{g}
$$

Kohn-Sham gap:

$\left.\frac{\delta \tilde{T}_{s}[n]}{\delta n(\mathbf{r})}\right|_{n_{M}^{+}(\mathbf{r})}-\left.\frac{\delta \tilde{T}_{s}[n]}{\delta n(\mathbf{r})}\right|_{n_{M}^{-}(\mathbf{r})}=I_{s}^{-\tau_{\text {номо }}(M)-A_{s}(M) \equiv E_{g, K S}, \tau_{\text {Lимо }}}$

$$
\begin{gathered}
\tilde{E}_{\mathrm{XC}}[n]=\tilde{F}[n]-\tilde{T}_{s}[n]-E_{\mathrm{H}}[n] \\
\left.\Delta_{\mathrm{XC}} \equiv \frac{\delta \tilde{E}_{\mathrm{XC}}[n]}{\delta n(\mathbf{r})}\right|_{n_{M}^{+}(\mathbf{r})}-\left.\frac{\delta \tilde{E}_{\mathrm{XC}}[n]}{\delta n(\mathbf{r})}\right|_{n_{\bar{M}}^{-}(\mathbf{r})}=E_{g}-E_{g, K S}
\end{gathered}
$$

Band gaps (eV) of selected semiconductors and insulators

 (table 7.1 from Ref. 6)| | Diamond | Si | Ge | LiCl | GaAs |
| :---: | :---: | :---: | :---: | :---: | :---: |
| LDA | 3.9 | 0.52 | 0.07 | 6.0 | 0.12 |
| Expt. | 5.48 | 1.17 | 0.744 | 9.4 | 1.52 |
| $\left.\Delta_{\mathrm{XC}} \equiv \frac{\delta \tilde{E}_{\mathrm{XC}}[n]}{\delta n(\mathbf{r})}\right\|_{n_{M}^{+}(\mathbf{r})}-\left.\frac{\delta \tilde{E}_{\mathrm{XC}}[n]}{\delta n(\mathbf{r})}\right\|_{n_{M}^{-}(\mathbf{r})}$ | | | | | |

\#3: I'm doing a band-structure calculation with a good semilocal functional. Why is my band-gap "wrong"?
Lack of derivative discontinuity in approximate functional.

FAQ and FHM:

\#1: Since $F[n]$ is independent of the external potential, why not calculate F extremely accurately for one system and then use it for all others?
Misunderstood the meaning of "universal functional".
\#2: What is the physical meaning of the Lagrange multiplier μ ?
That depends. Could be -I or could be -A
\#3: I'm doing a band-structure calculation with a good semilocal functional. Why is my band-gap "wrong"?
Lack of derivative discontinuity in approximate functional.

FAQ and FHM:

\#1: Since $F[n]$ is independent of the external potential, why not calculate F extremely accurately for one system and then use it for all others?
Misunderstood the meaning of "universal functional".
\#2: What is the physical meaning of the Lagrange multiplier μ ? That depends. Could be -I or could be -A
\#3: I'm doing a band-structure calculation with a good semilocal functional. Why is my band-gap wrong?
Lack of derivative discontinuity in approximate functional.
\#4: Do "good densities" imply "good energies" ? Not necessarily.

$\varepsilon_{\text {номо }}=-I=-0.793 \mathrm{H}=E(\mathrm{Ne})-E\left(\mathrm{Ne}^{+}\right)$
$\varepsilon_{\text {Номо }}=-0.793 \mathrm{H}$
$\varepsilon_{\text {Номо }}=-0.498 \mathrm{H}$
$E\left(\mathrm{Ne}^{+}\right)-E(\mathrm{Ne})=-127.400+128.233=0.833 \mathrm{H}$

* C.J. Umrigar and X. Gonze, in Proceedings of the Mardi Gras '93 Conference, ed. D.A. Browne et al .,(World Scientific, 1993).

Understanding and Reducing Errors in Density Functional Theory, M. Kim et al., Phys. Rev. Lett. 111, 073003 (2013).
$E_{\mathrm{xc}}^{\mathrm{LDA}}\left[n_{\text {accurate }}\right]$ Very little improvement
i.e. It's a "functional error"

Example: Stretched homunclear diatomics.

As opposed to:
$E_{\mathrm{xc}}^{\mathrm{LDA}}\left[n_{\text {accurate }}\right] \longrightarrow$ Significant improvement
"density-driven error"
Example: Electron affinities.

Ref. 10 AW, J. Nafziger, K. Jiang, M-C.Kim, E. Sim, and K. Burke, The Importance of Being Inconsistent, Ann. Rev. Phys. Chem. 68, 555 (2017).

Total error: $\Delta E=\tilde{E}-E=\Delta E_{F}+\Delta E_{D}$
Functional error: $\Delta E_{F}=\tilde{F}[n]-F[n]$

Density-driven error:

$\Delta E_{D}=\tilde{F}[\tilde{n}]-\tilde{F}[n]+\int d^{3} r(\tilde{n}(\mathbf{r})-n(\mathbf{r})) v(\mathbf{r})$
In "normal" calculations, $\Delta E_{F} \gg \Delta E_{D}$
M. Kim et al., Understanding and Reducing Errors in Density Functional Theory, Phys. Rev. Lett. 111, 073003 (2013).
M. Vuckovic et al., Density Functional Analysis: The Theory of Density-Corrected DFT, J. Chem. Theory Comput. 15, 6636 (2019).

Outline

- Simplest possible examples of density functionals
- Chemical Potential
- Derivative Discontinuities
- Key errors (self-interaction, delocalization, static-correlation)

For detailed error analysis when stretching bonds, check Ref.9: Cohen, MoriSanchez, and Yang, Chem. Rev. (2012).

exact

LDA
OA-LDA
J. Nafziger and AW, JCP 143, 234105 (2015).

J.P. Perdew, R.G. Parr, M. Levy, J.L. Balduz, Phys. Rev. Lett. 49, 1691 (1982).

H atom

H atom

Stretched $\mathrm{H}_{2}{ }^{+}$

$$
E(R \rightarrow \infty) \longrightarrow E \text { of } \mathrm{H} \text { atom }
$$

$$
F[n]=\frac{1}{8} \int d \mathbf{r} \frac{|\nabla n(\mathbf{r})|^{2}}{n(\mathbf{r})}
$$

Check linearity of the exact functional for (up to) 1 electron:

$$
\begin{aligned}
& \text { Define } \quad n_{N}(\vec{r})=N n(\vec{r}) \\
& F\left[n_{N}\right]=N F[n] \\
& E[n]=F[n]+\int d^{2} r v(\vec{r}) n(\vec{r})
\end{aligned}
$$

For 1-electron systems, one expects

$$
E_{\mathrm{H}}[n]=-E_{\mathrm{XC}}[n]
$$

But, for approximate density functionals:

$$
\mathrm{SIE}=E_{\mathrm{H}}[n]+E_{\mathrm{XC}}[n]
$$

Now, consider a density that integrates to a noninteger number of electrons $0<N<1$, defined by

$$
n_{N}(\mathbf{r})=N n_{1}(\mathbf{r})
$$

Since

$$
\begin{aligned}
& E_{\mathrm{H}}[n]=\frac{1}{2} \int d \mathbf{r} \int d \mathbf{r}^{\prime} \frac{n(\mathbf{r}) n\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} \\
& E_{\mathrm{X}}^{\mathrm{LDA}}[n]=A_{\mathrm{X}} \int d \mathbf{r} n^{4 / 3}(\mathbf{r})
\end{aligned}
$$

Then:

$$
\operatorname{SIE}(N)=\underbrace{\downarrow_{\mathrm{XC}}\left[N n_{1}\right]+\sum^{4 / 3} E_{\mathrm{X}}\left[n_{1}\right]}_{\substack{2 \\ N^{2} E_{\mathrm{H}}\left[n_{1}\right]}}
$$

But LDA is convex

H_{2}^{+}binding curve

Aron J. Cohen, Paula Mori-Sánchez and Weitao Yang Science 321, 792 (2008);
DOI: 10.1126/science. 1158722

Approximate DFT calculations typically...

Underestimate:
Energies of dissociating molecular ions
Barriers of Chemical Reactions
Band gaps of materials
Charge transfer excitation energies
Overestimate:
Binding energies of charge-transfer complexes
Response to Electric fields

Aron J. Cohen, Paula Mori-Sanchez and Weitao Yang Science 321, 792 (2008);
DOI: $10.1126 /$ science. 1158722

J. Nafziger and AW, JCP 143, 234105 (2015).

Fractional Spins in the Hydrogen atom:

Static Correlation Error

J. Nafziger and AW, JCP 143, 234105 (2015).

FAQ and FHM:

\#1: Since $F[n]$ is independent of the external potential, why not calculate F extremely accurately for one system and then use it for all others?
Misunderstood the meaning of "universal functional".
\#2: What is the physical meaning of the Lagrange multiplier μ ?
That depends. Could be -l or could be -A
\#3: I'm doing a band-structure calculation with a good semilocal functional. Why is my band-gap wrong?
Lack of derivative discontinuity in approximate functional.
\#4: Do "good densities" imply "good energies" ?
Not necessarily.

\#5: Which functional should I choose ?

Check out W. Koch and M.C. Holthausen: "A Chemist's Guide to Density Functional Theory", Wiley (2001).

Peter Elictit
1
K. Burke, Perspective on Density Functional Theory, J. Chem. Phys. 136, 150901 (2012).
"Clearly, when calculating a property to compare with experiment, one could keep trying functionals until agreement with the measured value is reached. Not only is this contrary to the entire spirit of DFT, it is certainly not first principles, and is the worst form of empiricism. The literature today is (mildly) infected with such calculations, and the existence of so many approximations, with so little guidance, makes it ever more difficult for nonspecialists to separate the silver from the dross. Users should stick to the standard functionals (as most do, according to Fig. 1), or explain very carefully why not."
K. Burke, Perspective on Density Functional Theory, J. Chem. Phys. 136, 150901 (2012).

FAQ and FHM:

\#1: Since $F[n]$ is independent of the external potential, why not calculate F extremely accurately for one system and then use it for all others?
Misunderstood the meaning of "universal functional".
\#2: What is the physical meaning of the Lagrange multiplier μ ?
That depends. Could be -I or could be -A
\#3: I'm doing a band-structure calculation with a good semilocal functional. Why is my band-gap wrong?
Lack of derivative discontinuity in approximate functional.
\#4: Do "good densities" imply "good energies" ?
Not necessarily.

\#5: Which functional should I choose ?

That also depends. But after picking one, stick to it.

