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Outline

Method for this lecture: Go back to the basics from
yesterday and discuss selected FAQ and FHM

e Simple examples of density functionals
e Chemical Potential
 Derivative Discontinuities

* Key errors (self-interaction, delocalization,
static-correlation)
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FAQ and FHM:

#1: Since F|n| is independent of the external potential, why
not calculate F extremely accurately for one system and then
use it for all others?

Misunderstood the meaning of “functional”.

The most you can do for one system is calculate its energy
and density very accurately and that will give you one point
of the functional: The value of F for that density.

Then you could write down an expression for Fn] that would
reproduce your answer for that density, but there are
infinitely many ways to do this.

Some expressions for /[n] produce the exact answer for
infinitely many systems.
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* Simplest examples of density functionals



For only 1 electron, Y = {n®d
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Reminders from yesterday:

F(n| = Ts[n| + Ex[nDExc[n]

Eu4Eye = O ;a» 1 Judho

Difficult and, In some ways still anresolved problom in DFT: approximate expressions for E, often
do not cancel the Hartree for 1-electron systems



Approximations for 1] that are explicit functionals of the density are generally 100 crude 1o be very useful

“Orbital-free DFT”

dF[n]
+vir)=u
on(r) TV =
Reference: ABC of DFT, by Kieron Burke
Ref.1 http://dft.uci.edu

Kinetic energy of M non-interacting and spinless
fermions in 1d:
M
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Is there some way to get 7, without evaluating all
the orbitals?

Yes: Write it as a density functional, i.e., an
integral over some function of n(x),

M
n(z) =Y |oj(x)?
i=1

Simplest choice: a local approximation:

72 [t .
T°¢[n] = E/ dz n*(x)
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Construction motivated by:

9 .

T J
j=12.3,...

[

=) 9

2 M 7‘.‘_)
SM(M + 1)(2M +1)/6

2 —
21

™~
[

As M increases, density inside the box tends to

constantn = M /L, so:



Particles in 1d-box

M T loc T, Toerr
1 4112 | 4934 | -17
2 2179 | 2467 | -12
3 62.92 | 69.09 -9

25 26875 | 27264 | -1
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In KS-DFT, 7, is not calculated this way, but it is
obtained “exactly” from the orbitals.

« T.)*[n]: simplest example of functional design by satisfaction of
exact constraint.

* Local approximations work best for large M, worst for small M.
T —

* Local approximations are crudely correct, but miss details.

* OK, | have a functional. What do | do with it?

For our non-interacting 1d-spinless fermions:
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FAQ and FHM:

#2: What is the physical meaning of the Lagrange multiplier u?

(gF[H: .
on(r) +vlr) :QP

“Chemical potential”
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Derivative of the energy with respect to an average number of
electrons; e.g. system in contact with a reservoir of electrons.
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Inhomogeneous Electron Gas*
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%{E.[n]—n f »(r)dr}=0- (67)



/drrin(r) =)
Sz dF [n]
OF = /dr ((sn(r)) on(r)

So, Flnl s only defined to within an arbitrary additive

on(r)  constant.
/drn(r) =M

e.g., for only 1 electron,

1 |V'n,(r)|'2
F[n| = §/dr n(r)

6F[n] 1 (an.(r)|2 B 2V2n(r)>

én(r) 8\ n(r)? n(r)

Schrodinger’s  d F[n]
equation on(r)

+u(r)=p=E(l)=- 1(1)
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What can this mean?
(Check Ref.8)

Why generalize DFT to non-integer numbers of electrons?:

(1) DFT is based on a variational principle, so it is convenient to not have to
worry about density variations that do not conserve the number of particles.

(2) Many physical situations where it is convenient to treat NV as a continuous
variable.



Chapter 7 in
“Quantum Theory of
the Electron Liquid”, —_ _

G.F. Giuliani and G. K =H —pN
Vignale (Cambridge

University Press, H — N
2005). ref6

Molecule with

Metal with work
M electrons function -u

J.P. Perdew, in NATO ASI Ser.,
Ser.B 123 (Density Funct.
Methods Phys.), 265 (1985). ®rels




lonization Potential:

N A I[(M)=E(M—1) — E(M)
Electron Affinity:
AM)=FEM)—-EM +1)
M+1
.

4 (M) 1 (M)



lonization Potential:
N I(M)=E(M—1) — E(M)
/t\ Electron Affinity:

<D AM) = E(M) — E(M +1)

M+1

M

M-1 —

4 (M) 1 (M)
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lonization Potential:
1 (]\[ ) — E(]\[ — 1) — F (]\[ )

Electron Affinity:
AM)=FEM)—-E(M +1)
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FAQ and FHM:

#2: What is the physical meaning of the Lagrange multiplier x?
That depends. Could be —I or could be —A.



FAQ and FHM:

#3: I’'m doing a band-structure calculation with a good semi-
local functional. Why is my band-gap “wrong”?
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 Derivative Discontinuities



J.P. Perdew, R.G. Parr, M. Levy, J.L. Balduz, Phys. Rev. Lett. 49, 1691 (1982).



lonization Potential:
1 (]\[ ) — E(]\[ — 1) — F (]\[ )
Electron Affinity:

A(M) = E(M) — E(M +1)

4 (M) 1 (M)
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Fundamental gap:

8 F[n] 8F[n]
on(r) ~ dn(r)

=I(M) - A(M) = E,

Koopmans'

ny(r) nylr)

Kohn-Sham gap:
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Band gaps (eV) of selected semiconductors and insulators
(table 7.1 from Ref. 6)

-nmm

0.52 0.07 0.12
Expt. 5.48 1.17 0.744 9.4 1.52
) EXC n] ) EXC [n]
e T — — k. — B
T Ton(r) | . on(r) | _ 9~ Tk
UBYi (r) USYi (r)

#3: I’'m doing a band-structure calculation with a good semi-

local functional. Why is my band-gap “wrong”?
Lack of derivative discontinuity in approximate functional.



FAQ and FHM:

#3: I’'m doing a band-structure calculation with a good semi-

local functional. Why is my band-gap “wrong”?
Lack of derivative discontinuity in approximate functional.
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From: E.J. Baerends, O.V. Gritsenko, and R. van Meer, Phys. Chem. Chem. Phys. 15, 16408 (2013).



FAQ and FHM:

#1: Since F|n] is independent of the external potential, why

not calculate F extremely accurately for one system and then
use it for all others?

Misunderstood the meaning of “universal functional”.

#2: What is the physical meaning of the Lagrange multiplier u ?
That depends. Could be —I or could be -A

#3: I'm doing a band-structure calculation with a good semi-
local functional. Why is my band-gap wrong?

Lack of derivative discontinuity in approximate functional.

#4: Do “good densities” imply “good energies” ?
Not necessarily.
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&Eiomo = - 0.793 H

E(Ne*) — E(Ne) = -127.400 + 128.233 = 0.833 H

Y. Shi, V. Chavez, and AW, “n2v: A density-to-potential inversion suite”, WIREs Comput Mol. Sci. 12, e1617 (2022).






LDA minus exact xc
0.5 f potential
0 F
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* C.J. Umrigar and X. Gonze, in Proceedings of the Mardi Gras ‘93 Conference,
ed. D.A. Browne et al .,(World Scientific, 1993).
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Understanding and Reducing Errors in Density Functional Theory, M. Kim et al.,
Phys. Rev. Lett. 111, 073003 (2013).

LDA
Exc [naccurate] mmmmm)  Very little improvement

i.e. It’s a “functional error”

Example: Stretched homunclear diatomics.

As opposed to:

LDA

E. _|n | =) Sjgnificant improvement

accurate

“density-driven error”
Example: Electron affinities.

Ref.10 AW, J. Nafziger, K. Jiang, M-C.Kim, E. Sim, and K. Burke, The Importance of Being
Inconsistent, Ann. Rev. Phys. Chem. 68, 555 (2017).



Approximate  Exact

Totalerror: AE =F — E = AE; + AE)

Functional error: AF, = F[n] — F|n]|
Density-driven error:

AE, = F[i] — F[n] + | d3r(7(r) — n(r))v(r)
In “normal” calculations, AL >> AE,

M. Kim et al., Understanding and Reducing Errors in Density Functional Theory,
Phys. Rev. Lett. 111, 073003 (2013).

M. Vuckovic et al., Density Functional Analysis: The Theory of Density-Corrected
DFT, J. Chem. Theory Comput. 15, 6636 (2019).
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* Key errors (self-interaction, delocalization,
static-correlation)



For detailed error analysis when stretching bonds, check Ref.9: Cohen, Mori-
Sanchez, and Yang, Chem. Rev. (2012).
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J. Nafziger and AW, JCP 143, 234105 (2015).



M-1 M M+1

J.P. Perdew, R.G. Parr, M. Levy, J.L. Balduz, Phys. Rev. Lett. 49, 1691 (1982).
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Check linearity of the exact functional for (up to) 1 electron:
Uit Ny (= N (@)
Flayl = N F(n)
E[n): FLad4 (dr v n0)

For 1-electron systems, one expects
Ey[n] = —Exc[n|
But, for approximate density functionals:
SIE = Ey[n] + Exc|n|

Now, consider a density that integrates to a non-
integer number of electrons 0 < N < 1, defined by

ny(r) = Nny(r)



Since

Then:

=06 -
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SIE(N) = Ey[Nny] + Exc[Nny]

/ \

N?Ey[ny] N2 Eq[m]

But LDA is convex

exact

‘ | | | A
0 0.2 0.4 0.6 0.8 |
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Emolecule B Eatom

H, binding curve

r 1 1 1 1
1 3 5 7 9
R (Angstrom)

Aron J. Cohen, Paula Mori-Sanchez and Weitao Yang

Science 321, 792 (2008);
DOI: 10.1126/science.1158722



Approximate DFT calculations typically...

Underestimate:
Energies of dissociating molecular ions

Barriers of Chemical Reactions
Band gaps of materials
Charge transfer excitation energies

Overestimate:
Binding energies of charge-transfer complexes

Response to Electric fields

Aron J. Cohen, Paula Mori-Sanchez and Weitao Yang

Science 321, 792 (2008),
DOI: 10.1126/scsence 1158722



dissociation energy (millihartree)

100

H, PBE
50F
0' -
exact
_spol OA-PBE
—100F
—150F
0 4 6 8 10

H-H distance (bohr)

J. Nafziger and AW, JCP 143, 234105 (2015).



energy error (millihartree)

Fractional Spins in the Hydrogen atom:

b
-

S

A =V2 error [H]

V ——

%N

Static Correlation Error




dissociation energy (millihartree)

100

H, PBE

SOf IA

exact
—50} OA-PBE

—100F

—150f

0 2 4 6 8 10
H-H distance (bohr)

J. Nafziger and AW, JCP 143, 234105 (2015).



FAQ and FHM:

#1: Since F|n] is independent of the external potential, why

not calculate F extremely accurately for one system and then
use it for all others?

Misunderstood the meaning of “universal functional”.

#2: What is the physical meaning of the Lagrange multiplier u ?
That depends. Could be —I or could be -A

#3: I'm doing a band-structure calculation with a good semi-
local functional. Why is my band-gap wrong?
Lack of derivative discontinuity in approximate functional.

#4: Do “good densities” imply “good energies” ?
Not necessarily.
#5: Which functional should | choose ?

Check out W. Koch and M.C. Holthausen: “A Chemist’s Guide to
Density Functional Theory”, Wiley (2001).
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K. Burke, Perspective on Density Functional Theory, J. Chem. Phys. 136, 150901 (2012).



“Clearly, when calculating a property to compare
with experiment, one could keep trying functionals
until agreement with the measured value is
reached. Not only 1s this contrary to the entire spirit
of DFT, it 1s certainly not first principles, and 1s the
worst form of empiricism. The literature today 1s
(mildly) infected with such calculations, and the
existence of so many approximations, with so little
guidance, makes it ever more difficult for non-
specialists to separate the silver from the dross.
Users should stick to the standard functionals (as
most do, according to Fig. 1), or explain very
carefully why not.”

K. Burke, Perspective on Density Functional Theory, J. Chem. Phys. 136, 150901 (2012).



FAQ and FHM:

#1: Since F|n] is independent of the external potential, why
not calculate F extremely accurately for one system and then
use it for all others?

Misunderstood the meaning of “universal functional”.

#2: What is the physical meaning of the Lagrange multiplier u ?
That depends. Could be —I or could be -A

#3: I'm doing a band-structure calculation with a good semi-

local functional. Why is my band-gap wrong?
Lack of derivative discontinuity in approximate functional.

#4: Do “good densities” imply “good energies” ?
Not necessarily.

#5: Which functional should | choose ?
That also depends. But after picking one, stick to it.



